Lecture 10 - scribbles - convex opt

Friday, February 23, 2018

foday: Contrive stochostic subgradiant malhad (SGD)

[sidenote; $S(w) = F_{(x,y) \sim p} S(x,y,w)$] L(w) using calibration function

<u>last tunie</u>: We showed that $\min(\mathbb{E}_{S(x)} - \mathbb{E}_{S(x)}) \subset \mathbb{E}_{S(x)}$ when $\mathcal{E}_{t} = \mathbb{E}_{s(x)}$ (constant) $\mathbb{E}_{S(x)} = \mathbb{E}_{s(x)} = \mathbb{E}_{s(x)}$

(an also show that with $\chi = A$, min $\xi_{\xi} = O(\frac{\log(T_{\xi})}{|T_{\xi}|})$

and if set C is bounded, can show O (diam(c)) rate

shongly convex case (µ20)

The
$$(1-\mu de)(1+1)$$
 of $(1-\mu de)(1+1)$ of $(1-\mu de$

$$(4n) & \leq A (4n) & (4n) (6n) & (4n) (6n) & (4n) &$$

S is convex	S(xe)-S(xx) >		rodust (xo, Xxx)	
	Ef(2+)-f1	x*) \le	(stochostic selling)	
assumptions	rate determin	istic (balch)	stochastic setting	Sinite Jum 12 folz) Special case nin
1) non-smooth 1125112B	O(Bro)	subgradient method	O(Bla)	Jane day III
2) Smooth L-Lipschitz DS	$O(L_{\delta}^{2})$	gradient method	O(1) SE	O O(Jnh) SAO/A
	(lover band)	Nesterov mothod, "gotimal method"		
11-(3) non-smooth	O(B ²)	Subgradient malhed	O(B2)	
Smooth L-lipschitz	(exp(-jut))		O(At)	Oloxo(-17t)) SA6/A

more generally protections are revised gradient method smooth ron-smooth

Constrained of: $h(z) = S_{C}(z) \stackrel{d}{=} S_{+}$ if $z \in C$ O o. w.

Proximal gradient method: $\int_{-\infty}^{\infty} P(x) x^{2} dx$

projected gradient method:

projected gradient method = proximil gradient method when $h(x) = S_c(x)$ related to step size...

projected gradient method = proximil gradient method when $h(x) = S_c(x)$

example: h(x) = 1/x1/1

"linear coupling" paper