today: finish Δ-graphs & M₃-net, dual SVMstruct

\[M = L \text{ for } \triangle \text{-graphs (continuation):} \]

- If \(G \) is triangulated \(\Rightarrow \) construct a junction tree

\(G: \)

\[\text{junction tree for } G: \]

- \(\text{every maximal clique of } G \) is a node of the JT.

\(L \): clique tree, \(G \) contains all cliques along unique path from \(C_i \) to \(C_j \) in JT.

- \(v \in C \cap C_2 \) then \(v \) belongs to all cliques along unique path from \(C_i \) to \(C_j \) in JT.

To build JT: first build weighted complete graph on cliques where weight on edges is \(|C_i \cap C_j| \):
(see Def. 10.6 in Koller & Friedman)

We need to show that
\[f(x) \circ \mu = A \circ \mu \circ B \circ \mu \]

Let's say, want to show $M_B(y_B) = \sum y' \circ (y_B) \circ y' \\ y': y_B^*, y_B = y_B$

\[\sum y': y_B^*, y_B = y_B \left(\sum y: M_B(y_B) \right) \]

\[y': y_B^*, y_B = y_B \left(\sum y: M_B(y_B) \right) \]

\[\sum y: M_B(y_B) \left(\sum y: M_B(y_B) \right) \]
Teaching Page 3

Maximize \(f(x) = \sum_{i \in I} a_i^T x + c^T y \) subject to \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \).

Let \(\text{max} \{ f(x) : x \in \mathcal{X} \} = \text{max} \{ \sum_{i \in I} a_i^T x : x \in \mathcal{X} \} \).

Given a \((I,J)\)-elimination tree, we can find \(y^* \) by solving the LP

\[
\text{max} \left\{ \sum_{i \in I} a_i^T x : x \in \mathcal{X}, \sum_{j \in J} x_j = 1 \right\}
\]

for each \(i \in I \) and \(j \in J \).

For \(f(x) = \sum_{i \in I} a_i^T x + c^T y \) with \(c \geq 0 \), we have

\[
\text{max} \{ f(x) : x \in \mathcal{X}, y \in \mathcal{Y} \} = \text{max} \{ \sum_{i \in I} a_i^T x : x \in \mathcal{X} \} + \text{max} \{ c : y \in \mathcal{Y} \}.
\]

Overall, suppose that \(l(i,y) \) decomposes as shown on page 6.

\[
\text{max} \{ l(i,y) - w^T y(i,y) : y(i,y) \in \mathcal{Y}^I \} = \max_{y \in \mathcal{Y}} \left\{ \sum_{i \in I} a_i^T x + (c + \mathbf{w})^T \mathbf{u} - \mathbf{w}^T \mathbf{y}^* \right\},
\]

where \(\mathbf{w} \) is the weight vector.

Last class:

1. Solve this LP on a developmentally structured SVM.
2. Use Mosek, CPLEX, etc. to solve to 1e-16 accuracy.
3. Saddle point formulation

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x,y) = \min_{x \in \mathcal{X}} \left\{ \sum_{i \in I} a_i^T x + c^T y : y \in \mathcal{Y} \right\}
\]

The extragradient method would require projecting on \(\mathcal{X} \) (local consistency polytope).
Do check: can you use message passing for that?

and there is a version of gradient algorithm which only requires LMOS "linear minimization oracles" on L's instead of projection (saddle pt, Frank-Wolfe algorithm) \rightarrow we'll come back later

interior point method:

\[
\min f(x) \\
\text{s.t. } Ax = b, \quad x \geq 0
\]

(can transform \(A^T \tilde{z} \leq b \) \(\Rightarrow A^T \tilde{z} + \tilde{g} = \tilde{b}, \quad \tilde{z} \geq 0 \) to \(Ax = b \) and \(\tilde{z} \geq 0 \) ... Mackie transformation)

\[
\text{minimize } f(x) - t \log x \approx g_t(x) \\
\text{s.t. } Ax = b
\]

\(\text{dom}(g_t(x)) = \{ x; x > 0 \} \)

\[
\begin{aligned}
\text{feasible domain } & \\
& \text{argmin } g_t(x)
\end{aligned}
\]

utilize point method: run Newton's method with warm start on \(g_t(x) \) and decrease \(t \) with geometric schedule

Convergence: Newton's method takes \(\log(\log(\log(\log(\log(1/e)))) + C_1/(2^t) - f^\infty) \) iterations to reach \(\varepsilon \) accuracy

\# iterations

IPM: \(\log(1/e) \cdot \text{some constant overall convergence} \)

\(+ \text{dimensionality is appearing; but no condition number of } f \) (vs. gradient method)

\(\text{cost on iteration } \tilde{g}_t(Y^t) \)
cost per teacher is O(d^2)