Lecture 19 - scribbles - deep learning Tuesday, March 27, 2018 · proximal gradient method { Catalyst · latent SVM struct + CCCP · deep learning - FNN · learning to search - SEAFIN poximal avodient method La generalization of projected gradient method to other non-smooth Sunctions Composite framework: F(w) & f(w) + Q(w) where f is convex & L-smooth Q is convex but not now. Smooth constrained apt. $SL(w) = S_M(w) \triangleq S_M(w) \triangleq S_M(w) = S_M(w) \triangleq S_M(w) = S_M$ proximal gradient update: W41 = algmin Slove) + < Dflux), w-we> + [1/w-w2112+ 2/w) if dest than SIW) & BELW) YW we can rewrite Belw) = [| W - [we-8+ PS/we]] | 2+ (St. (by completing the square) => if D(w)= SM(w); we got projected gradient elq.

=> if L(lw)= Sm(lw); we get projected gradient deg.		
The state of the s		
WEY = Prox St (Wt-8t Df(Wt))		
10.50 (1) 00.21 A (5 D(1) (1) 7127		
"proximil operator" prox { (z) = argumen { Q [w] +1 w-z 2}		
like for prejation, prox operator is non-expansive (i.e. 1-Lipschitz)		
ie. prox & (w) - prox & (w') = 1 w-w' _2		
V		
=7 convergence rates of frow gradient method one same as unconstrained gradient descent		
ey. if f is ustronglyconolar; linear rate with page		
* to be useful, need prox's to be efficiently computable		
prox (2) = argmin w 1+ 1 (w-2162		
Soft-flowshiftin' = C San(3) [(Zd)-X] if Zd > X		
"soft-thresholding" = $S sgn(z) [(zd) - 8]$ if $ zd > 8$ o.w.		
FISTA -> academoted prox gratient method		
st algorithm Lin, Mairal & Hanchadui NIPS 20157		
meta-algorithm": outer loop which uses a linearly conneigent algo		
meta-algorithm": outer loop which uses a linearly conneigent algorithm in the union loop to get overall acceleration(2)		
10 Ari Whiath accordy 44191/2)		

main dea: use the accelerated proximal point algorithms with approximation inter loop of prox operator proximal pt. alg.: is proximal gradient with f=0 L> WH = prox (Wt) Catalyst da : (Set M-stongly connect F) let q = 11 (8 is an algorithm to parameter) to be specified $w_{c+1} \approx argmin F(w)+1 ||w-z_{e}||^{2} \text{ s.t. } G_{e}(w_{e+1})-min G_{e}(w) \leq \varepsilon_{e}$ $= \frac{2}{2} G_{e}(w)$ $= \frac$ Larcelenated Mesteron 3 Frick pièce Zeri = Weri + Beri (Weri-We) like a increntum' Ben is Sund using Jancy equation so that everything works stre for att in eq. att = (1-att) at + 90 to)

(pick of e. = 0,1[) Ben = 0,1(1-or) On 2 + orber
$\beta_{L_1} \triangleq (\gamma_{L_1}(1-\alpha_L))$
$\alpha_{t} + \alpha_{t+1}$
Cuthlast trick's use 8 5 Ex
s.t. Overall # of cinner loop calls in 7 14+1
give an overall acaleration
Catalyst trick: use & & Ex s.t. Overall # of vinen box calls in > 4+1 give an operall acceleration with clover analysis of warm starting strong conversely of yind problem acceleration result: if vinen loop dg. has convergence explicit t
acceleration results is in une loop oby. has convergence explicit
then with correct constants =
lineariate: D=L ~ > > L for shongly convex case
Les Les Convex case
result e.g. get accolorated SABA
" SURG " AFW
etc
Dop lamina.
go from <w, (e(2,14)=""> to <w, (e(2,14);="" 6)=""></w,></w,>
I) plua in "deep learning" features in a structured grediction model
Dreumple: Och 3 3

do SGD on this chain rule >> backpropagation

decodines: araman & log plye (yiri, x)

> noed approximation

greedy directing $\hat{Q}_{e} = \operatorname{argmax} p(y|\hat{Q}_{1:e4}; x)$

learn souch "govery with memory of size k"

Seg2seg/erroder/dixoder

Ly useful way to get plyt | y1:t1, 2) for RNN
when x is wantable length

"enroden RNN"

155ULS ;

11 Lecoder RNN"

a) variable langth output?

-> end-of-sequence spacial character

b) long input sequence & ?

pidem: Weds to be summanize in fixed length context vector

Schrön: "attention mechanism"

context his his whity

	· LSTM · opted reament unit (GRU)
Learning to search (L2S) SEAR	J Hal Daune's phd thusis
$h\omega: X \rightarrow X$	V
$h_{\omega}(x) = \underset{g \in \mathcal{G}}{\operatorname{argmax}} S(x, y; \omega)$	
special cose: learning to do greedy search	
split y in ordered # of decisions	
(91,000, 97)	\sim
laun a Missylin 77 (fective (g),, y la sylin "police	tize) f gt
L25 framework's fram (z(1),y(1)) in cond l	
learn a good classifin/poli	cy The set. gc=Ttyll,,ge,,2)
	hu(z) = (g,, yt) "groody decoder!
S.t. R(y(i), hw/z(i)) is good	l

C) vanishuig gradiant?

Lly", hwle") is good Ontral dea: "reduction": when reduces structured prediction learning for Tw method: generate training data for classifor Tw ie. (Ycontext, 25), cost (Ynout)) roll-in policy - dotermines how get gi:t-1 context how get year, y "completion" Ily(1), (g, -.. yt, ynext ye, ... y)) my year ... yr roll ont Cost lyneat Charles = completion (91:0) (91:0) (91:1) (900) reference misture learned the Jotreft James la Tref for Mampuia loss relonence - inconsident I in practice: Hemistic Consistince approximate it LOLS JCMI DOIS 11 locally aprimal learning to search " Lauring better from your teacher

ie. when hourstic is not aprimal

SEARNN: apply LOS to RUN training i.e. Tw (Yith, x) >> RNN all

Wynest | Yith, x) of a RNN

"if use -log plybyd (yrity)a) as cost

11 farget learning

and appropriate = ground hull

then LDS with ref rollin is standard MLE

* radduss exposure bios using loaned roll-in make use of structured loss l(...) vs. MLE