Disclaimer: These notes have only been lightly proofread.

2.1 Probability review

2.1.1 Motivation

Question: Why do we use probability in data science?

Answer: Probability theory is a principled framework to model uncertainty.

Question: Where does uncertainty come from?

Answer: There are several sources:

1. it can be intrinsic to certain phenomenon (e.g. quantum mechanics);
2. reasoning about future events;
3. we can only get partial information about some complex phenomenon:
 (a) e.g. throwing a dice, it is hard to fully observe the initial conditions;
 (b) for an object recognition model, a mapping from pixels to objects can be incredibly complex.

2.1.2 Notation

Note that probability theorists and the graphical models community both use a lot of notational shorthands. The meaning of notations often has to be inferred from the context. Therefore, let’s recall a few standard notations.

Random variables will be noted X_1, X_2, X_3, \ldots, or sometimes X, Y, Z. Usually, they will be real-valued.

x_1, x_2, x_3, \ldots (or x, y, z), will denote the realizations of the former random variables (the values the Xs can take).
Formally

Let us define Ω, a sample space of elementary events, $\{\omega_1, \omega_2, \omega_3, \ldots\}$.

Then a random variable is a (measurable\(^2\)) mapping $X : \Omega \mapsto \mathbb{R}$.

Then, a probability distribution P is a mapping $P : \mathcal{E} \mapsto [0, 1]$, where \mathcal{E} is the set of all subsets of Ω, i.e. the set of events (i.e. 2^Ω, i.e. a σ-field\(^3\)) ; such that

$$
\begin{align*}
-P(E) &\geq 0 \quad \forall E \in \mathcal{E} \\
-P(\Omega) &= 1 \\
-P(\bigcup_{i=1}^{\infty} E_i) &= \sum_{i=1}^{\infty} (E_i) \quad \text{when } E_1, E_2, \ldots \text{ are disjoint.}
\end{align*}
$$

Kolmogorov axioms

Therefore, a probability distribution on Ω induces a probability distribution on the image of X\(^4\) : $\Omega_X \overset{\Delta}{=} X(\Omega)$. An event $\{x\}$ for $x \in \Omega_X$ thus gets the probability

$$
Px(\{x\}) = P(\{\omega : X(\omega) = x\})
= P(X^{-1}(\{x\}))
= P\{X = x\} \quad \text{(shorthand)}
= p(x) \quad \text{actually used shorthand, even more ambiguous}
$$

where $X^{-1}(A) \overset{\Delta}{=} \{\omega : X(\omega) \in A\}$.

Example

In the case of a dice roll, $\Omega = \{1, 2, \ldots, 6\}$. Let’s consider two random variables : X measures whether the dice result is even. Y measures whether the dice result is odd.

Formally, $X = 1_{\{2,4,6\}}$, and $Y = 1_{\{1,3,5\}}$ where

$$
1_A(\omega) \overset{\Delta}{=} \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{otherwise} \end{cases}
$$

is the indicator function on A.

\(^1\)temporarily assumed to be a countable set
\(^2\)Wikipedia
\(^3\)the σ-field formalism is necessary when Ω is uncountable, which happens as soon as we consider a continuous random variable.
\(^4\)The image of X is the set of the possible outputs of $X : X(\Omega) = \{x : \exists \omega \in \Omega \text{ s.t. } X(\omega) = x\}$
We can now define the joint distribution on \((X, Y) \in \Omega_X \times \Omega_Y\).

\[
P_{X,Y}(\{X = x, Y = y\}) = P\left(X^{-1}(\{x\}) \cap Y^{-1}(\{y\})\right)
\]

\((X, Y)\) can be called a random vector, or a vector-valued random variable, with “random variable” meant in a generalized sense.

We can represent the joint distribution as a table, such as in our running example:

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(X = 0)</th>
<th>(X = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = 0)</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(Y = 1)</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
</tbody>
</table>

For instance: \(P(\{X = 1, Y = 0\}) = P(\{2, 4, 6\}) = \sum_{\omega \in \{2, 4, 6\}} p(\omega) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}\).

Let’s also define, in the context of a joint distribution, the marginal distribution, i.e. the distribution on components of the random vector:

\[
P\{X = x\} = \sum_{y \in \Omega_Y} P\{X = x, Y = y\}
\]

This rule is a property, deriving it from the axioms is left as an exercise for the reader.

2.1.3 Types of random variables

Discrete random variables

For a discrete random variable, \(\Omega_X\) is countable. Its probability distribution on \(\Omega_X\), \(P_X\), is fully defined by its probability mass function (aka pmf), \(P_X(\{X = x\})\), for \(x \in \Omega_X\). This notation is shortened as \(P_X(x)\), and even as \(p(x)\), “typing” \(x\) as only denoting values of the \(X\) variable. Thereby, it is possible that \(p(x) \neq p(y)\) even if \(x = y\), in the sense that \(p(x)\) means \(P_X(x)\) and \(p(y)\) means \(P_Y(y)\).

More generally, for \(\Omega_X \in \mathbb{R}\), the probability distribution \(P_X\) is fully characterized by its cumulative distribution function (aka cdf): \(F_X(x) \triangleq P_X\{X \leq x\}\).

\(^5\)This comma means and, the intersection of both events.
It has the following properties:

1. F_X is non-decreasing;
2. $\lim_{x \to -\infty} F_X(x) = 0$;
3. $\lim_{x \to +\infty} F_X(x) = 1$.

For discrete random variables, the cumulative distribution function is piecewise constant, and has jumps.

Continuous random variables

For a continuous random variable, the cumulative distribution function is “absolutely continuous”, i.e. is differentiable almost everywhere, and $\exists f(x)$ s.t. $F_X(x) = \int_{-\infty}^{x} f(u)du$. Said f is called the probability density function of the random variable (aka pdf). Where f is continuous, $\frac{d}{dx}F_X(x) = f(x)$.

The probability density function is the continuous analog of the probability mass function of a discrete random variable (with sums becoming integrals). Hence:

<table>
<thead>
<tr>
<th></th>
<th>discrete</th>
<th>continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{x \in \Omega_X} p(x) = 1$</td>
<td>$\int_{\Omega_X} p(x) = 1$</td>
<td></td>
</tr>
<tr>
<td>$p = \text{prob. mass function}$</td>
<td>$p = \text{prob. density function}$</td>
<td></td>
</tr>
</tbody>
</table>

Note in the continuous case, as a density function, $p(x)$ can be greater than 1, on a sufficiently narrow interval. For instance, the uniform distribution on $[0, \frac{1}{2}]$:

$$p(x) = \begin{cases}
2 & \text{for } x \in [0, \frac{1}{2}] \\
0 & \text{otherwise}
\end{cases}$$

2.1.4 Other random variable basics

Expectation/mean

The expectation of a random variable is

$$\mathbb{E}[X] \triangleq \sum_{x \in \Omega_X} x \cdot p(x) \quad \text{or} \quad \int_{\Omega_X} x \cdot p(x) \, dx \quad \text{(in the continuous case)}$$

Variance

$$Var[X] \triangleq \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Variance is a measure of the dispersion of values around the mean.
Indepandance

X is independant from Y, noted $X \perp Y$, iff $p(x, y) = p(x)p(y) \ \forall x, y \in \Omega_X \times \Omega_Y$.
Random variables $X_1, \ldots X_n$ are mutually independant iff $p(x_1, \ldots x_n) = \prod_{i=1}^n p(x_i)$.

Conditioning

For events A and B, suppose that $p(B) \neq 0$. We define the probability of A given B,

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$$

In terms of sample space, that means we look at the subspace where B happens, and in that space, we look at the subspace where A also happens.

For random variables X and Y, thus :

$$P(X = x|Y = y) \triangleq \frac{P(X = x, Y = y)}{P(Y = y)}$$

$P(Y = y) = \sum_x P(X = x, Y = y)$ is a normalization constant, necessary in order to get a real probability distribution.

By definition, we get the product rule :

$$p(x, y) = p(x|y)p(y) \quad \text{(product rule)}$$

It is always true, with the subtle point that $p(x|y)$ is undefined if $p(y) = 0$.6

Bayes rule

Bayes rule is about inverting the conditioning of the variables.

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x'} p(x', y)} \quad \text{(Bayes rule)}$$

Chain rule

By successive application of the product rule, it is always true that :

$$p(x_1, \ldots, x_n) \begin{array}{c} = p(x_{1:n-1})p(x_n|x_{1:n-1}) \\
= \cdots \\
= \prod_{i=1}^n p(x_i|x_1, \ldots, x_{i-1}) \end{array} \quad \text{(Chain rule)}$$

The last part can be simplified using the conditional independance asumptions we make, like in the case of directed graphical models.

6In probability theory, we usually do not care what happens on sets with probability zero; so we are free to define $p(x|y)$ to be any value we want when $p(y) = 0$. 2-5
Conditional independance

X is conditionally independant of Y given Z, noted $X \perp Y | Z$, iff

$$p(x, y | z) = p(x | z)p(y | z) \quad \forall x, y, z \in \Omega_x \times \Omega_y \times \Omega_z \text{ s.t. } p(z) \neq 0$$

For instance, with Z the probability that a mother carries a genetic disease on chromosome X, X the probability for her first child to carry the disease, and Y the same probability for her second child, we can say that X is independant of Y given Z (because only the status of the mother impacts directly each child: once that is known, children’s probabilities of carrying the disease are independant from each other).

As an exercise to the reader, prove that $p(x | y, z) = p(x | z)$ when $X \perp Y | Z$.