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As usual, please hand in on paper form your derivations and answers to the questions. You can
use any programming language for your source code (submitted on Studium as per the website
instructions). All the requested figures should be printed on paper with clear titles that indicate
what the figures represent.

1. DGM (5 points) X v
Consider the directed graphical model G on the right. Write down
the implied factorization for any joint distribution p € L(G). Is it
true that X 1LY | T for any p € L(G)? Prove or disprove. Nz

2. d-separation in DGM (5 points)
Indicate (yes or no) which conditional independence statements are true?

B
(a) C L B?
(b)y c LB | A?
(c) C LB | AJ?
e a (dy ¢ L B | A,J,D ?
(e) C L G?
(f) ¢ L G| B?
e 6 G (g0 ¢ L G| B,D?
(hy c L G| B,D,H?
(iy c L 6| B,D,H,E ?
OROROR

3. Positive interactions in-V-structure (10 points)
Let X,Y, Z be binary random variables with a joint distribution parametrized according to
the graph: X — Z <— Y. We define the following:

a:=P(X=1), b=PX=1|Z=1), ¢=PX=1|Z=1Y=1)
(a) For all the following cases, provide examples of conditional probability tables (and cal-
culate the quantities a, b, ¢), that render the statements true:
(i) a>c
(i) a<e<bd
(ili) b<a<ec.

(b) Think of X and Y as causes and Z as a common effect, for all the above cases (i, ii, et
iii), summarize in a sentence or two why the declarations are true for your examples.
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4. Flipping a covered edge in a DGM (10 points)
Let G = (V, E) be a DAG. We say that a directed edge (7, j) € E is a covered edge if and only
if mj =mU{i}. let G’ = (V,E'), with ' = (E\{(¢,7)}) U{(J,7)}. Prove that L(G) = L(G").

5. Equivalence of directed tree DGM with undirected tree UGM (10 points)
Let G be a directed tree and G’ its corresponding undirected tree (where the orientation of
edges is ignored). Recall that by the definition of a directed tree, G does not contain any

v-structure. Prove that £(G) = L(G').

6. Hammersley-Clifford Counter example (10 points)
In class, I mentioned that the strict positivity of the joint distribution was crucial in the
Hammersley-Clifford theorem. Here is a counter-example that shows the problems when we
have zero probabilities (it is example 4.4 in Koller & Friedman). Consider a joint distribution p
over four binary random variables: X;, X5, X3 and X, which gives probability % to each of
the following eight configurations, and probability zero to all others:

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1
(0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1

Let G be the usual four nodes undirected graph X;—Xo—X3—X,;—X;. One can show
that p satisfies the global Markov property with respect to this graph G because of trivial
deterministic relationships. For example, if we condition on X, = 0 and X, = 0, then the
only value of X3 with non-zero probability is X3 = 0, and thus X3|Xs = 0, X4 = 0 being a
deterministic random variable, it is trivially conditionally independent to X;. By (painfully)
going through all other possibilities, we get similar situations (for example X = 0 and X, = 1
forces X; = 0, etc.). Prove that the distribution p cannot factorize according to G' (and thus
p ¢ L(G)). Hint: argue by contradiction.

7. [BONUS]: bizarre conditional independence properties (10 bonus points)
Let (X, Y, Z) be a random vector with a finite sample space. Consider the following statement:

“Uf X1LY | Z and X 1LY then (X1 Z or Y1 7).

(a) Is this true if one assumes that Z is a binary variable? Prove or disprove.

(b) Is the statement true in general? Prove or disprove.

8. Implementation: EM and Gaussian mixtures (30 points)
The file EMGaussian.train contains samples of data z; where z; € R? (one datapoint per
row). The goal of this exercise is to implement the EM algorithm for some mixtures of K
Gaussians in R? (here d = 2 and K = 4), for i.i.d. data. (NB: in this exercise, no need to
prove any of the formula used in the algorithms except for question (b)).

(a) Implement the K-means algorithm. Represent graphically the training data, the cluster
centers, as well as the different clusters (use 4 colors). Try several random initializations
and compare results (centers and the actual K-means objective values).



IFT6269-A2017 Hwk 3 Name:
Prof: Simon Lacoste-Julien Due date: Oct 24, 2017 Student id:

(b)

Consider a Gaussian mixture model in which the covariance matrices are proportional
to the identity. Derive the form of the M-step updates for this model and implement the
corresponding EM algorithm (using an initialization with K-means).

Represent graphically the training data, the centers, as well as the covariance matrices
(an elegant way is to represent the ellipse that contains a specific percentage, e.g., 90%,
of the mass of the Gaussian distribution).

Estimate and represent (e.g. with different colors or different symbols) the most likely
latent variables for all data points (with the parameters learned by EM).

Implement the EM algorithm for a Gaussian mixture with general covariance matrices.
Represent graphically the training data, the centers, as well as the covariance matrices.

Estimate and represent (e.g. with different colors or different symbols) the most likely
latent variables for all data points (with the parameters learned by EM).

Comment the different results obtained in earlier questions. In particular, compare the
normalized log-likelihoods of the two mixture models on the training data, as well as on
test data (in EMGaussian.test). (Here normalize the log-likelihood by the number of
observations (rows) — it makes the number more manageable for comparison and puts it
on the right scale).



