IFT 6269: Probabilistic Graphical Models	Fall 2017
Lecture $1 - $ September	5
Lecturer: Simon Lacoste-Julien	Scribe: Isabela Albuquerque

1.1 Probabilistic Graphical Models

- Goal: Model multivariate data
- Mix of graph and probability theory. Or, more illustratively:

• Probability vs. Statistics:

1.2 Applications

Some illustrative examples of Hidden Markov Models (HMM) applications.

Notation:

- X_t : **Observed** random variable. Represented in the graphical model as a **shaded** node.
- Y_t : Not observed random variable. Represented in the graphical model as an empty node.
- Graph edges (-): Represents possible correlations between random variables in the graphical models. Lack of edges in the graph will represent **conditional independence** assumptions, as we will see later.

Important!

- When modeling a problem using graphical models, random variables represent the quantities of interest.
- In the context of PGM, a random vector is often just called a *random variable* thus a random variable might be scalar or vector valued.

1.2.1 Example 1: Speech Recognition

 X_t : Sound wave encoding for a small time window (e.g. as a spectral decomposition) Y_t : Phoneme

1.2.2 Example 2: Part-of-speech tagging

X_t : Word

 Y_t : Part-of-speech (word grammatical classification)

1.2.3 Example 3: Gene finding

 X_t : Sequence of nitrogenous base

 Y_t : Coding or non-coding (i.e. $Y_t \in \{0, 1\}$)

1.2.4 Example 4: Control system

$y_{t+1} = Ay_t + Bv_t + \epsilon_t,$	$(y_t \text{ is the latent state})$
$x_t = Cy_t + \epsilon'_t,$	(Observation)

where y_t and x_t are continuous vectors and v_t is a given control term. The terms ϵ and ϵ' represent the noise in the system. If they are modeled as Gaussian noise, this HMM is a Kalman Filter.

1.3 Why Graphical Models?

Back to the part-of-speech tagging example:

Notation:

- An observation of T words is represented as $(x_1, x_2, \ldots, x_T) \triangleq x_{1:T}$
- For a vocabulary of size $k, x_t \in \{1, \ldots, k\}$

Problem: We want to model $p(x_{1:T})$, which corresponds to an exponential size state space. Thus, $\approx K^T$ parameters have to be estimated to define a probability distribution on $x_{1:T}$

Trick: make a factorization assumption about the distribution $p(x_{1:T})$.

 $p(x_1,\ldots,x_T) = f_1(x_1)f_2(x_2|x_1)f_3(x_3|x_2)\ldots f_T(x_T|x_{T-1}).$

Each factor f can be seen as a clique in the graphical model and needs $\approx K^2$ parameters to be specified. As we have T factors in this factorization, we reduce the total number of parameters from K^T (exponentially grows with T) to TK^2 (linearly grows with T). Now, back to our problem, say we want to compute the marginal probability of x_1 , $p(x_1) = \sum_{x_2,\dots,x_T} p(x_{1:T})$. Using the factorization assumption, we can write $p(x_1)$ as:

$$p(x_1) = \sum_{x_2,\dots,x_T} f_1(x_1) f_2(x_2|x_1) f_3(x_3|x_2) \dots f_T(x_T|x_{T-1}).$$
(1.1)

Applying the distributive property of the product over a sum (a(b+c) = ab + ac), we can rewrite equation 1.1 as

$$p(x_1) = f_1(x_1) \left(\sum_{x_2} f_2(x_2 | x_1) \left(\sum_{x_3} f_3(x_3 | x_2) \dots \left(\sum_{x_T} f_T(x_T | x_{T-1}) \right) \dots \right) \right).$$
(1.2)

This organized and efficient way to compute the marginal $p(x_1)$ is known as the **Message** passing algorithm. The term $\sum_{x_T} f_T(x_T | x_{T-1})$ is named message and denoted as $M_T(x_{T-1})$. The following forms illustrates $M_T(x_T)$ (componented by the red error) passing through a

The following figure illustrates $M_T(x_{T-1})$ (represented by the red arrow) passing through a graph.

1.4 Key Themes

- 1. Representation: how to represent structured probability distributions.
 - Related to parameterization (e.g. full table, exponential family)
- 2. Estimation: given data samples, how do we learn the parameters of the distribution underlying the observations?
 - Related to learning (e.g. Maximum Likelihood Estimation)
- 3. Inference: answer questions about the data, as computing conditional distributions p(y|x) or marginals $p(x_1)$.
 - Efficient computation (e.g. Message passing algorithm)