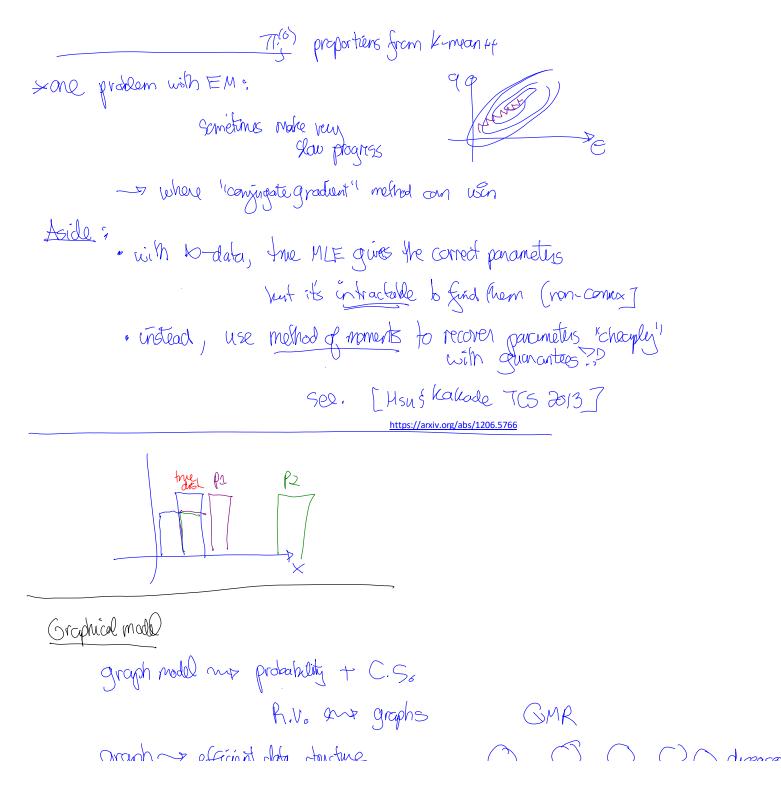
Lecture 10 - scribbles

Friday, October 6, 2017 13:21 today: finish EM & GMM . dwickel graphical model


EM continuation " $S(q, e) = Eq \left[\log p(x, z; e) \right]$ p(z|x; e) $\log p(x; \varepsilon) - S(q, \varepsilon) = - \operatorname{Eq} \left[\log \left[\log \frac{1}{q(z)} \right]^{2} \right]$ $= \mathbb{F}_q \left[\log \frac{q(z)}{p(z|z^{c})} \right]$ $= KL(q(\cdot) || p(\cdot | z_{j} \in)) \quad (kL - dwigene)$ $\frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ Operationally. E step '. $Q_{tt_1} = argmax S(q, o_t) = argmin KL(q || p(\cdot | x; o_t))$ $q \in alloint.$ q $\Rightarrow Q_{L+1}(z) = p(z(z, 0_{L}))$ [inference] M step Ger = argman S(941,G) GEOD 11

Teaching Page 1

$$\begin{array}{c} \underbrace{\operatorname{Equilleg}}{\operatorname{Equilleg}} & \operatorname{Equilleg}_{\operatorname{Equilleg}} + \operatorname{cst} \\ \underbrace{\operatorname{Equilleg}}{\operatorname{Equilleg}} & \operatorname{Equilleg}_{\operatorname{Equilleg}} + \operatorname{cst} \\ \operatorname{Equilleg}_{\operatorname{Equilleg}} & \operatorname{Equilleg}_{\operatorname{Equilleg}} + \operatorname{cst} \\ \operatorname{Equilleg}_{\operatorname{Equilleg}} & \operatorname{Equilleg}_{\operatorname{Equilleg}} + \operatorname{Equilleg}_{\operatorname{Equil$$

Teaching Page 2

$$= \begin{array}{l} = \left(\begin{array}{c} Q_{\text{Erl}}(z_{i}) \propto p(x_{i}|z_{j}(c_{i})p(z_{i}|c_{i}) \\ N(z_{i}|A_{z_{i}}z_{z_{i}}) \end{array} \right) \\ = \left(\begin{array}{c} N(z_{i}|A_{z_{i}}z_{z_{i}}z_{z_{i}}) \end{array} \right) \\ = \left(\begin{array}{c} N(z_{i}|A_{z_{i}}z_{z_{i}}$$

Teaching Page 4

e.g.
$$X_{1,n+1}$$
 $K_{1,0}$ $K_{1,0}$

J · · · J V -

Jeneral issues in this class
A) representation _____OGM _____ probabilities
prametrization -> exponential Samily ______ probabilities
B) informe computing
$$p(\mathcal{X}_{\mathcal{G}} \mid \mathcal{Z}_{\mathcal{F}})$$

"gueun" "aritimo"

Teaching Page 6

Ly sum-product dy.
yurden is
C) tablitud ostination -> MLE
maining entropy
method of monads
Notehin:
n distute RV. X1, ..., Xn Vie set of varies
joint
$$p(X_1 = x_1, X_0 = x_0, ..., X_m = n) \neq p(x_1, ..., x_m)$$
 recall
joint $p(X_1 = x_1, X_0 = x_0, ..., X_m = n) \neq p(x_1, ..., x_m)$ recall
joint $p(X_1 = x_1, X_0 = x_0, ..., X_m = n) \neq p(x_1, ..., x_m)$ recall
for any ASV
magninel on x_A
 $p(x_A) = P[X_1 = x_1 > teA] = \underset{a_A \in A}{=} p(a_A, a_B)$ values of
 $x_{E1,a_{12}}$ or f_{21,x_1,y_2} $A = V(A = 2x_1 : i_{12} : MA$
reprint contribut integendence:
Let NAC = V XA II XO | XC
(F) $\leq p(a_A, x_O | X_C) = p(x_O(RC))$ $f(x_O(RC))$ $f(x_0, x_0, x_0)$

$$(C) \iff p(x_A | x_{b_1} z_c) = p(x_A | x_c) \qquad (p(x_{b_1} z_c) z_0)$$

"marginal independence":
$$X_{k} \perp X_{k} \mid X_{$$

directed graph
$$p(x_V) = \overline{f} p(x_i | x_{rre})$$

powents of i in graph G
 $\rightarrow tables g 2^{max | rri | + 1}$