Lecture 14 - scribbles

Friday, October 20, 2017

today: Max-product
. HMM

Sum-product schedules

a) before, we saw distribite/collect schedule

b) (flooding) parallel schodule:

1) Unitiallye Ministry (or;) messages to winform dist. Hliji) sol. Eijs EE

2) at every step (in parallel) compute mi-si (sy)

as if neighbor messages were correctly computed

To can prove that often "diameter of the free" steps, all mussages one convertily computed

3 6 5

Loopy Belief Propagation (Dogpy OF): approximate inference

 $M_{i\rightarrow j}^{\text{now}}(x_j) = \left(M_{i\rightarrow j}^{\text{old}}(x_j) \right)^{\alpha} \left(\sum_{x_i} \gamma_i |x_i \rangle \gamma_{ij}^{\text{old}}(x_i) \right)^{-\alpha} \left(\sum_{x_i} \gamma_i |x_i \rangle \gamma_{ij}^{\text{old}}(x_i) \right)^{-$

ac [0,1] "damping"

. This guis exact answer on tree (fixed point is exact)

. This guis exact answer on tree (fixed point is exact)
· on (not too logy) graphs, -> approximate soln
getting conditionels. 5 indicate values we are constituining on
we have $p(x; \mathcal{X}_E) \propto p(x; x_E)$
keep it fixed during product
(formal trick) % redofter $\widetilde{Y}_{g}(z_{g}) \triangleq Y_{j}(x_{s})$. $S(x_{j}, x_{j})$ for $j \in E$ Remoter-Delta Sunction $S(a,b) = S(a,b) = S(a,b)$
Kronocker-Dola $S(a,b)=S(a,b)=S(a,b)$
$M: \Rightarrow (7)$
~ will have Zoff(2). Stuff (25,2;)
$= \Upsilon_i(\overline{x_i}), shif(\overline{x_i}, \overline{x_i})$
at end of day, result of sum-product will give $p(x_i, \bar{x}_E) = \frac{1}{2} Y_i(x_i) T(m_{k > i}(z_i))$
P(7; TE) Prenormalize
More-product alg.
for sum-product, main properly used was distributionly of Fover @

Teaching Page 2

(IR, P, O) is <u>semi-ring</u> L> dan't need additive unverso can do "sum-product" on other Semi-ryigs $(IR, max, \Theta) \qquad max(aBb, aBc) = aB max(b, c)$ $(IR, max, O) \qquad max(aBb, aBc) = aB max(b, c)$ $(IR, max, O) \qquad max(aBb, aBc) = aB max(b, c)$ $\max_{X \in \mathcal{X}_{i,i}} \mathcal{T}(\mathcal{E}_{i}(x_{i})) = \mathcal{T}(\max_{X_{i}^{n}} \mathcal{E}(x_{i}))$ $M(z(x)) = \max_{z(x)} \left[Y_i(x)^2 Y_i(x, x) \right] \left[\max_{z(x)} X_i(x) \right]$ La fir ang max, store argument of this man as function of an 70 max-product de aka viterbi alg

-> "derading" chamax p(x1:n) dopends on a ; angriax $p \in f(\text{free}) \Rightarrow p(x) = \mathcal{T}(p(x)) \mathcal{T}(\text{pla:},x)$ with ron-zero managinals

noord ,

+ to - f p & Slanding dod from) => YES (any onentation) => p(2)= 1 p(2; (217) for some original of free say a_n is root $= \left(\left(\left(p(x_i \mid x_{\pi_i}) \right) p(x_n) \right)$ $= \left(\frac{1}{\sqrt{N}} \frac{p(x_0, x_0)}{p(x_0, p(x_0))} \right) p(x_0)$ = (pq;) (px; qx; x)05 before, for any set of factors Efig (xi, xj), fi(xi)} fij 20 fi 20 Moral S.t. $\left\{ \int_{S} f(x_i, x_i) = \int_{S} (x_i) \right\}$ Consistency property $\left\{ \int_{S} f(x_i, x_i) = \int_{S} (x_i) \right\}$ 25; (xi)=1 then if define a joint $p(x) = T_{\xi}(x_i) T_{\xi_i} \underbrace{S_{\xi_i}(x_i, y_i)}_{\xi_i \in \mathcal{S}_{\xi_i}(x_i)}$ We get correct manginals i.e. pos;)= filz;) etc... Juntion free do & generalization of sam product to a clique free

Teaching Page 4

Informació Pechico

prediction p(Zt (x1:t-1) "when next"? Calterna p(Ze(21:6) "where now?" smoothing p(Zt(Z1:T) "where in the past?") MZ-172 (Z) lots run sum product have P(2+17)=11. M26-174(26). M26-24(26) $M_{\chi_{\varepsilon}} = \mathbb{Z}_{\varepsilon} (Z_{\varepsilon}) = \mathbb{Z}_{\varepsilon} \rho(\chi_{\varepsilon} | Z_{\varepsilon}) S(\chi_{\varepsilon} | Z_{\varepsilon}) = \rho(\overline{\chi_{\varepsilon}} | Z_{\varepsilon})$ MZL-1724 (24) = = = (ZE1ZE1) MZL2+ZE1 (ZE1) M (ZE1) M (ZE1) define: Ost (Ze) = p(Ze, Zit) (Ze) = p(Ze | Ze) = p(Ze | Ze-1) × E-1 (Ze-1) × E-1 (Ze-1

Teaching Page 7

 $4(Ze) = p(Ze|Ze) = p(Ze|Ze_1) \times (Ze_1)$ $vedar \times vedar$ $vedar \times vedar$ vedar vedar vedar vedara-recursion aka forward reausion like the "rolled phase" in sum-product of $(z_1) = p(z_1, \overline{z_1}) = p(z_1) p(\overline{z_1}|\overline{z_1})$ [If the ung) with It as he tout time complexity: 0(+, K2) space complexity: O(12) extra (O12) for storing A)