Friday, November 3, 2017 13:33 today: max. entropy equivalance with ML duality exponential formely recoll: last time ML <> min KL(ph || pE) today: maximum entropy min KL(q11 uniform) GEM Maximum entropy principle: ideas consider some subset of dist. on X according to some dotal-duiser information get a subset ME AIXI principle pick p EM by maninizing entropy ie, $\hat{p} = chamax H(q)$ $q \in M$ = chamin KL(q||uniform) = chamin KL($\sum_{n=1}^{\infty} q(n) \log q(n) = -H(q) + cst,$

× example from Wainwright

PL=3 Vargoros are affanted
PL=3 II drick Faster boar
Question: how many II are left left handed & drivine F. been
E have : more entry solution is last
$$p(B,L) = Pb^{\circ}PL$$
 (independence) 7
* how do we get M?
typically - Analyn empirical dosewation
fasteries functions $Tr(x), ..., Td(x)$
define $M = Eq$: Eq $ET_{T}(X)I = Eff EV(X)7$ $J=1,...,d$
involved expected empirical balance
Involved expected empirical balance
Involved expected empirical balance
Involved Expected
Solutions over $q \in A_{VM} \leq IR^{M}$
then MaxENT: min KL(q11 with) som solar
 $q \in IR^{M}$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $q \in M$ $J = Eq s(T_{T}(x) = eff MS$
 $f = Convex qol, problem over $q \in A_{VM} \leq IR^{MS}$
 M $S(th) \leq O = 1..., M$ J " $Origine Pailow$ "$

Teaching Page 2

Set
$$f(\alpha) > \bigcup_{i \in I_{i}, m} \int (f(\alpha) - g(\alpha) - g(\alpha)$$

Teaching Page 3

~

-

Teaching Page 4

$$[ME in expanded famely <> remain matching is exp. formely
Inte: $\nabla_{n} \ln 2(n) = 1$, $\nabla_{n} \notin utilexplot T(x) = 2$ (1 utilexplot T(x)) $T(x)$]
 $\nabla_{n} \ln 2(n) = E_{p(n)} (T(x)) = 2$ (1 utilexplot T(x)) $T(x)$]
 $\nabla_{n} \ln 2(n) = E_{p(n)} (T(x)) = 4(n)$
 $\nabla_{n} \oint(n) = E_{p(n)} (T(x)) = 4(n)$
 $\nabla_{n} \oint(n) = E_{p(n)} (T(x)) = E_{p(n)} (T(x))$ is model paramelt
 $\nabla_{n} \oint(n) = E_{p(n)} (T(x)) = E_{p(n)} (T(x))$ is model
 $F(x) = 1$ is $x = 2$
 $F(x) = 1$ is $x$$$

J

1

restate our duality result:
$$p_n = argmin KL(q IIu) EMar ENT?
qEM "I-projection" I-> cojornation
Pn= argmin KL(pn IIq) MLE in exp. fourily
qEE "M-projection M-projection M-projection$$