IFT 6269: Probabilistic Graphical Models

Fall 2016
Lecture 2 - September 6
Lecturer: Simon Lacoste-Julien
Scribe: William Léchelle

Disclaimer: These notes have only been lightly proofread.

2.1 Probability review

2.1.1 Motivation

Question : Why do we use probability in data science ?
Answer : Probability theory is a principled framework to model uncertainty.
Question : Where does uncertainty come from?
Answer : There are several sources :

1. it can be intrinsic to certain phenomenon (e.g. quantum mechanics) ;
2. reasoning about future events ;
3. we can only get partial information about some complex phenomenon :
(a) e.g. throwing a dice, it is hard to fully observe the initial conditions ;
(b) for an object recognition model, a mapping from pixels to objects can be incredibly complex.

2.1.2 Notation

Note that probability theorists and the graphical models community both use a lot of notational shorthands. The meaning of notations often has to be inferred from the context. Therefore, let's recall a few standard notations.

Random variables will be noted $X_{1}, X_{2}, X_{3}, \ldots$, or sometimes X, Y, Z. Usually, they will be real-valued.
$x_{1}, x_{2}, x_{3}, \ldots$ (or x, y, z), will denote the realizations of the former random variables (the values the X s can take).

Formally

Let us define Ω, a sample space of elementary events, $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right\}^{1}$.

Then a random variable is a (measurable ${ }^{2}$) map$\operatorname{ping} X: \Omega \mapsto \mathbb{R}$.

Then, a probability distribution P is a mapping $P: \mathcal{E} \mapsto[0,1]$, where \mathcal{E} is the set of all subsets of
 Ω, i.e. the set of events (i.e. 2^{Ω}, i.e. a σ-field ${ }^{3}$) ; such "world of possibilities" "measurements"

$$
\left.\begin{array}{l}
-P(E) \geq 0 \quad \forall E \in \mathcal{E} \\
-P(\Omega)=1 \\
-P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty}\left(E_{i}\right) \quad \text { when } E_{1}, E_{2}, \ldots \text { are disjoint. }
\end{array}\right\} \text { Kolmogorov axioms }
$$

Therefore, a probability distribution on Ω induces a probability distribution on the image of $X^{4}: \Omega_{X} \triangleq X(\Omega)$. An event $\{x\}$ for $x \in \Omega_{X}$ thus gets the probability

$$
\begin{aligned}
P_{X}(\{x\}) & =P(\{\omega: X(\omega)=x\}) \\
& =P\left(X^{-1}(\{x\})\right) \\
& =P\{X=x\} \quad \text { (shorthand) } \\
& =p(x) \text { actually used shorthand, even more ambiguous }
\end{aligned}
$$

where $X^{-1}(A) \triangleq\{\omega: X(\omega) \in A\}$.

Example

In the case of a dice roll, $\Omega=\{1,2, \ldots, 6\}$. Let's consider two random variables :
X measures whether the dice result is even.
Y measures whether the dice result is odd.
Formally, $X=\mathbb{1}_{\{2,4,6\}}$, and $Y=\mathbb{1}_{\{1,3,5\}}$ where

$$
\mathbb{1}_{A}(\omega) \triangleq \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { otherwise }\end{cases}
$$

is the indicator function on A.

[^0]

We can now define the joint distribution on $(X, Y) \in \Omega_{X} \times \Omega_{Y}$.

$$
P_{X, Y}\left(\left\{X=x,{ }^{5} Y=y\right\}\right)=P\left(X^{-1}(\{x\}) \cap Y^{-1}(\{y\})\right)
$$

(X, Y) can be called a random vector, or a vector-valued random variable, with "random variable" meant in a generalized sense.

We can represent the joint distribution as a table, such as in our running example :

$$
\begin{array}{l|ll}
& X=0 & X=1 \\
\hline Y=0 & 0 & \frac{1}{2} \\
Y=1 & \frac{1}{2} & 0
\end{array}
$$

For instance : $P(\{X=1, Y=0\})=P(\{2,4,6\})=\sum_{\omega \in\{2,4,6\}} p(\omega)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}$.
Let's also define, in the context of a joint distribution, the marginal distribution, i.e. the distribution on components of the random vector :

$$
\begin{equation*}
P\{X=x\}=\sum_{y \in \Omega_{Y}} P\{X=x, Y=y\} \tag{sumrule}
\end{equation*}
$$

This rule is a property, deriving it from the axioms is left as an exercice for the reader.

2.1.3 Types of random variables

Discrete random variables

For a discrete random variable, Ω_{X} is countable. Its probability distribution on Ω_{X}, P_{X}, is fully defined by its probability mass function (aka pmf), $P_{X}(\{X=x\})$, for $x \in \Omega_{X}$. This notation is shortened as $P_{X}(x)$, and even as $p(x)$, "typing" x as only denoting values of the X variable. Thereby, it is possible that $p(x) \neq p(y)$ even if $x=y$, in the sense that $p(x)$ means $P_{X}(x)$ and $p(y)$ means $P_{Y}(y)$.

More generally, for $\Omega_{X} \in \mathbb{R}$, the probability distribution P_{X} is fully characterized by its cumulative distribution function (aka cdf) : $F_{X}(x) \triangleq P_{X}\{X \leq x\}$.

[^1]It has the following properties :

1. F_{X} is non-decreasing ;
2. $\lim _{x \rightarrow-\infty} F_{X}(x)=0$;
3. $\lim _{x \rightarrow+\infty} F_{X}(x)=1$.

For discrete random variables, the cumulative distribu-

Example of a cumulative distribution function. tion function is piecewise constant, and has jumps.

Continuous random variables

For a continuous random variable, the cumulative distribution function is "absolutely continuous", i.e. is differentiable almost everywhere, and $\exists f(x)$ s.t. $F_{X}(x)=\int_{-\infty}^{x} f(u) d u$. Said f is called the probability density function of the random variable (aka pdf). Where f is continuous, $\frac{d}{d x} F_{X}(x)=f(x)$.

The probability density function is the continuous analog of the probability mass function of a discrete random variable (with sums becoming integrals). Hence :

discrete	continuous
$\sum_{x \in \Omega_{X}} p(x)=1$	$\int_{\Omega_{X}} p(x)=1$
$p=$ prob. mass function	$p=$ prob. density function

Note in the continuous case, as a density function, $p(x)$ can be greater than 1 , on a sufficiently narrow interval. For instance, the uniform distribution on $\left[0, \frac{1}{2}\right]$:

$$
p(x)= \begin{cases}2 & \text { for } x \in\left[0, \frac{1}{2}\right] \\ 0 & \text { otherwise }\end{cases}
$$

2.1.4 Other random variable basics

Expectation/mean

The expectation of a random variable is

$$
\mathbb{E}[X] \triangleq \sum_{x \in \Omega_{X}} x p(x) \quad \text { or } \quad \int_{\Omega_{X}} x p(x) d x \quad \text { (in the continuous case) }
$$

Variance

$$
\begin{aligned}
\operatorname{Var}[X] & \triangleq \mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

Variance is a measure of the dispersion of values around the mean.

Independance

X is independant from Y, noted $X \Perp Y$, iff $p(x, y)=p(x) p(y) \forall x, y \in \Omega_{X} \times \Omega_{Y}$. Random variables $X_{1}, \ldots X_{n}$ are mutually independant iff $p\left(x_{1}, \ldots x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)$.

Conditioning

For events A and B, suppose that $p(B) \neq 0$. We define the probability of A given B,

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}
$$

In terms of sample space, that means we look at the subspace where B happens, and in that space, we look at the subspace where A also happens.

For random variables X and Y, thus :

$$
P(X=x \mid Y=y) \triangleq \frac{P(X=x, Y=y)}{P(Y=y)}
$$

$P(Y=y)=\sum_{x} P(X=x, Y=y)$ is a normalization constant, necessary in order to get a real probability distribution.

By definition, we get the product rule :

$$
\begin{equation*}
p(x, y)=p(x \mid y) p(y) \tag{productrule}
\end{equation*}
$$

It is always true, with the subtle point that $p(x \mid y)$ is undefined if $p(y)=0 .{ }^{6}$

Bayes rule

Bayes rule is about inverting the conditioning of the variables.

$$
\begin{equation*}
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{x^{\prime}} p\left(x^{\prime}, y\right)} \tag{Bayesrule}
\end{equation*}
$$

Chain rule

By successive application of the product rule, it is always true that:

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1: n-1}\right) p\left(x_{n} \mid x_{1: n-1}\right) \\
& =\cdots \tag{Chainrule}\\
& =\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
\end{align*}
$$

The last part can be simplified using the conditional independance asumptions we make, like in the case of directed graphical models.

[^2]
Conditional independance

X is conditionally independant of Y given Z, noted $X \Perp Y \mid Z$, iff

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z) \quad \forall x, y, z \in \Omega_{x} \times \Omega_{y} \times \Omega_{z} \text { s.t. } p(z) \neq 0
$$

For instance, with Z the probability that a mother carries a genetic disease on chromosome X, X the probability for her first child to carry the disease, and Y the same probability for her second child, we can say that X is independant of Y given Z (because only the status of the mother impacts directly each child : once that is known, children's probabilities of carrying the disease are independant from each other).

As an exercise to the reader, prove that $p(x \mid y, z)=p(x \mid z)$ when $X \Perp Y \mid Z$.

[^0]: ${ }^{1}$ temporarily assumed to be a countable set
 ${ }^{2}$ Wikipedia
 ${ }^{3}$ the σ-field formalism is necessary when Ω is uncountable, which happens as soon as we consider a continuous random variable.
 ${ }^{4}$ The image of X is the set of the possible outputs of $X: X(\Omega)=\{x: \exists \omega \in \Omega$ s.t. $X(\omega)=x\}$

[^1]: ${ }^{5}$ This comma means and, the intersection of both events.

[^2]: ${ }^{6}$ In probability theory, we usually do not care what happens on sets with probability zero; so we are free to define $p(x \mid y)$ to be any value we want when $p(y)=0$.

