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For each question, give your derivations (not just the answer).

1. Probability and independence (10 points) (Question 2.9 from Koller and Friedman)
Prove or disprove (by providing a counterexample) each of the following properties of inde-
pendence.

(a) (X ⊥ Y,W | Z) implies (X ⊥ Y | Z)

(b) (X ⊥ Y | Z) and (X,Y ⊥W | Z) imply (X ⊥W | Z)

(c) (X ⊥ Y,W | Z) and (Y ⊥W | Z) imply (X,W ⊥ Y | Z)

(d) (X ⊥ Y | Z) and (X ⊥ Y |W) imply (X ⊥ Y | Z,W)

2. Bayesian inference and MAP (10 points)

Let X1, . . . ,Xn | π
iid∼ Multinomial(1,π) on k elements with a similar notation as seen in

class: the encoding for a possible value xi of the random vector Xi is xi = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
k )

with x
(i)
j ∈ {0, 1} and

∑k
j′=1 x

(i)
j′ = 1 (that is, we have a j∗ where x

(i)
j∗ = 1 and for each

j′ 6= j∗, x
(i)
j′ = 0). Consider a Dirichlet prior distribution on π: π ∼ Dirichlet(α), where

α = (α1, α2, . . . , αk) and αj > 0 for all j.
(The Dirichlet distribution is a distribution for a continuous random vector π which lies on
the probability simplex ∆k. Recall ∆k := {π ∈ Rk : 0 ≤ πj ≤ 1 and

∑k
j=1 πj = 1}. Its

probability density function1 is p(π|α) =
Γ(

∑k
j=1 αj)∏k

j=1 Γ(αj)

∏k
j=1 π

αj−1
j . Note that the beta distribu-

tion seen is class is the special case of a Dirichlet distribution for k = 2, like the binomial
distribution is the special case of a multinomial distribution for k = 2.)

(a) Supposing that the data is IID, what are the conditional independence statements that
we can state for the joint distribution p(π,x1, . . . ,xn)? Write your answer in the form of
formal conditional independence statements as in question 1 (a) - (d).

(b) Derive the posterior distribution p(π | x1, . . . ,xn).

(c) Derive the marginal probability p(x1, . . . ,xn) (or equivalently p(x1, . . . ,xn | α).) This
quantity is called the marginal likelihood and we will see it again when doing model
selection later in the course.

(d) Derive the MAP estimate π̂ for π assuming that the hyperparameters for the Dirichlet
prior satisfy αj > 1 for all j. Compare this MAP estimator with the MLE estimator for
the multinomial distribution seen in class: what can you say when k is extremely large?2

1Formally, this density function is taken with respect to a (k−1)-dimensional Lebesgue measure defined on ∆k.
But equivalently, you can also think of the density to be a standard one in dimension k − 1 defined for the first
k − 1 components (π1, . . . , πk−1) which are restricted to the (full) dimensional polytope Tk−1 := {(π1, . . . , πk−1) ∈
Rk−1 : 0 ≤ πj ≤ 1 and

∑k−1
j=1 πj ≤ 1}, and then letting πk := 1 −

∑k−1
j=1 πj in the formula. Note that this bijective

transformation from Tk−1 onto ∆k has a Jacobian with a determinant of 1, which is why the two Lebesgue measures
are equivalent and one does not need to worry about which of the two spaces we are defining the density on.

2An example of this is when modeling the appearance of words in a document: here k would be the numbers of
words in a vocabulary. The MAP estimator derived above when the prior is a symmetric Dirichlet is called additive
smoothing or Laplace smoothing in statistical NLP.
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3. Properties of estimators (20 points)

(a) Let X1, . . . , Xn
iid∼ Poisson(λ). Find the maximum likelihood estimator (MLE) and deter-

mine its properties: bias, variance, consistency (yes or no). (Recall that the pmf for a
Poisson r.v. is p(x|λ) = e−λ λ

x

x!
for x ∈ N.)

(b) Let X1, . . . , Xn
iid∼ Bernoulli(p) where we suppose that n > 10. If we take as an estimator

of p, p̂ := 1
10

∑10
i=1Xi, determine its properties: bias, variance, consistency (yes or no).

(c) Let X1, . . . , Xn
iid∼ Uniform(0, θ). Find the MLE and determine its properties: bias,

variance, consistency (yes or no).
(Hint: Let Y = max{X1, . . . , Xn}. For each c, P (Y < c) = P (X1 < c,X2 < c, . . . , Xn <
c) = P (X1 < c)P (X2 < c) · · ·P (Xn < c)).

(d) Let X1, . . . , Xn
iid∼ N (µ, σ2) (where µ ∈ R) for n ≥ 2 to simplify. Show that the MLE3 for

θ := (µ, σ2) is µ̂ = X̄ and σ̂2 := 1
n

∑n
i=1(Xi−X̄)2, where X̄ := 1

n

∑n
i=1Xi. Also determine

the properties only for σ̂2: its bias, the variance and whether it is consistent.

(Hint: for the variance of σ̂2 calculation, you may use the fact that 1
σ2

∑n
i=1(Xi − X̄)2 d

=
χ2
n−1, where χ2

n−1 is the chi-squared distribution with (n−1) degrees of freedom, and that
Var[χ2

n−1] = 2(n− 1).)

4. Empirical experimentation (simple programming assignment) (10 points)
In this question, we are going to numerically explore the MLE (maximum likelihood estimator)
of the variance parameter of the Gaussian, with the formula that was given in Question 3(d)
above.

(a) Draw n = 5 samples from the standard Gaussian distribution, N (0, 1).

(b) Using the samples as data, compute the ML estimate µ̂ for the mean and σ̂2 for the
variance of the Gaussian, as given in Question 3(d) above.

(c) Repeat steps (a) and (b) 10,000 times. Plot a histogram of the 10,000 estimates of the
Gaussian variance parameter to show its empirical distribution. Do you recognize its
shape?

(d) Use these 10,000 repeated trials to numerically estimate the (frequentist) bias and variance
of the ML estimate σ̂2 of the Gaussian variance parameter.

(e) Compare the results of (d) with the theoretical (frequentist) bias and variance that you
can compute from the formula you derived in Question 3(d). (Hint: if your numerical
estimates are very far from the theoretical formula, you made a mistake somewhere!)

3Note that formally we should use the notation σ̂2 (which looks ugly!) as we are estimating the variance σ2 of
a Gaussian rather than its standard deviation σ. But as the MLE is invariant to a re-parameterization of the full
parameter space (from σ2 to σ e.g.), then we simply have σ̂2 = σ̂2 and the distinction is irrelevant.


