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Relevant reading: Chapter 17; Chapter 21; Wainwright & Jordan book chapter.

Problem 6.1

Project: Continue work on your course project. (Nothing due until Tuesday, December 13.)

Problem 6.2

Triangulation/JT: Consider the two graphs shown below in panels (a) and (b) of Figure 1.
For each graph, first form a triangulated version, and then construct a junction tree using the
greedy algorithm. (You can simply implement each step of the greedy algorithm on paper to
find a maximum weight spanning tree.)
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Figure 1. (a), (b) Some undirected graphs to triangulate (Problem 2). (c) Two-dimensional
7 × 7 grid with toroidal boundary conditions (Problem 4, 5 (Bonus)).

Problem 6.3

Cautionary tale about importance sampling: Suppose that we wish to estimate the normalizing
constant Zp of a Gaussian p(·) ∼ N (0, σ2

p). Given i.i.d. samples y(1), . . . , y(M) from a standard
normal q(·) ∼ N (0, 1), consider the importance sampling estimate

Ẑ =
1

M

M∑

i=1

p∗(y(i))

q(y(i))
where p∗(y) = exp(−

1

2σ2
p

y2).

Show that Ẑ is an unbiased estimator of Zp. Letting f(y) = p∗(y)/q(y), show that var(Ẑ) =
var(f(Y ))

M
whenever var(f(Y )) is finite. For what values of σ2

p is this variance actually finite?
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Problem 6.4

Gibbs sampling and mean field: Consider the Ising model with binary variables Xs ∈ {0, 1},
and a factorization of the form:

p(x; η) ∝
{∑

s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt

}
.

To make the problem symmetric, assume a 2-D grid with toroidal (donut-like) boundary
conditions, as illustrated in Figure 1(c).

(a) Derive the Gibbs sampling updates for this model. Implement the algorithm for ηst =
0.5 for all edges, and ηs = (−1)s for all s ∈ {1, . . . , 49} (using the node ordering in
Figure 1(c)). Run a burn-in period of 1000 iterations (where one iteration amounts
to updating each node once). For each of 5000 subsequent iterations, collect a sample
vector, and use the 5000 samples to form Monte Carlo estimates µ̂s of the moments
E[Xs] at each node. Output a 7 × 7 matrix of the estimated moments. Repeating this
same experiment a few times will provide an idea of the variability in your estimate.

(b) Derive the naive mean field updates (based on a fully factorized approximation), and
implement them for the same model. Compute the average `1 distance 1

49

∑49
i=1 |τs− µ̂s|

between the mean field estimated moments τs, and the Gibbs estimates µ̂s.

Problem 6.5

Bonus: Sum-product and loopy graphs:

In many real-world applications (e.g., error-correcting
codes, data compression, sensor networks, computer vi-
sion, bioinformatics etc.), the sum-product algorithm
is applied to graphs with cycles. In sharp contrast to
trees, the sum-product updates are no longer guaran-
teed to converge, or to compute the correct marginal
distributions. Indeed, the results can be very surpris-
ing! As an illustration of this phenomenon, consider
a model on a toroidal grid (Figure 1(c)), given by
p(z; θ) ∝ exp

{
θ

∑
(s,t)∈E zszt

}
where Zs ∈ {−1, +1}

and θ ∈ R. Since this model is symmetric, the cor-
rect marginal distributions are p(zs = 1; θ) = 0.5 for all
nodes, and for all coupling strengths θ ∈ R. However,
if the loopy sum-product algorithm is run on this prob-
lem, it exhibits the strange behavior shown in Figure 2.
Show that for all θ < θcrit = 1

2 log 2 ≈ 0.3466, the loopy
form of sum-product will compute the correct symmetric
marginal distributions p(zs = 1; θ) = 0.5. Explain why
it breaks down for θ > θcrit.
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Figure 2. Break-down of the
sum-product algorithm on the
homogeneous Ising model. For
all θ < θcrit ≈ 0.3466, the sum-
product algorithm computes the
correct symmetric marginals. Be-
yond this point, it outputs in-
creasingly inaccurate answers, as
shown by the large average `1 dis-
tance between the SP estimate
and symmetric truth.
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