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Stochastic Process 
= 

Random Function



Today
• Motivate Gaussian and Dirichlet distribution in Bayesian Framework.
• Kolmogorov’s extension theorem.
• Define Gaussian Process and Dirichlet Process from finite-dimensional marginals.
• Gaussian Process:

• Motivating Applications: Kriging, Hyperparameter optimization.
• Properties: Conditioning/Posterior distribution.
• Demo.

• Dirichlet Process:
• Motivating Application: Clustering with unknown number of clusters.
• Construction: stick-breaking, Polya urn, Chinese Restaurant Process.
• De Finetti theorem.
• How to use.
• Demo.
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Disclaimer

I will be skipping the more theoretical building 
blocks of stochastic processes (e.g. measure 

theory) in order to be able to cover more 
material.



Recall some distributions 
Gaussian Distribution

Samples ! in "#.

Dirichlet Distribution

Samples $ in Simplex Δ#&'
verifies $' +⋯+ $# = 1
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Why Gaussian and Dirichlet?
They are often used as priors
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Bayesians like to use those 
distributions as priors

over model parameters !(#)

Why?
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Because they are very convenient
to represent/update.

Conjugate Priors
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! "|$ ∝ ! $ " !(")

PriorPosterior Likelihood 
model

Conjugate Prior means:
Posterior in same family as prior
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! "|$ ∝ ! $ " !(")
Prior

"|$ ∼ )*+,,-*.(/, 1)Posterior
"|$ ∼ )*+,,-*.(/′, 1′)

Likelihood
$|" ∼ )*+,,-*.(;, 1<)

)*+,,-*. is conjugate prior for
)*+,,-*. likelihood model.
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! "|$ ∝ ! $ " !(")
Prior

"|$ ∼ )*+*,-./0(1)Posterior
"|$ ∼ )*+*,-./0(12) Likelihood

$|" ∼ ;<0/=>+*,<.(?)

)*+*,-./0 is conjugate prior for
;<0/=>+*,<./AB.0*C>B..* likelihood model.
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So taking the posterior is simply
a matter of updating 

the parameters
of the prior. 



Back to Gaussian and Dirichlet
Gaussian Distribution

Samples ! in "#.

Dirichlet Distribution

Samples $ in Simplex Δ#&'
verifies $' +⋯+ $# = 1



14

Gaussian and Dirichlet
are indexed with a 

finite set of integers {1, … , %}.

They are random vectors.

((), (*, … , (+)
(-), -*, … , -+)
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Can we index random variables 
with infinite sets as well?

In other words,
define random functions.
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Defining stochastic processes
from their marginals.



17

Suppose we want to define a random function 
(stochastic process)

!: # ∈ % → ', 
where % is an infinite set of indices.

Imagine a joint distribution over all the ()*). 
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Kolmogorov Extension Theorem
informal statement

Assume that for any ! ≥ 1, and every finite subset of 
indices (%&, %(, … , %*), we can define a marginal 
probability (finite-dimensional distribution)

,-.,-/,…,-0(1-., 1-/, … , 1-0)
Then, if all marginal probabilities agree, there exists a 
unique stochastic process 2: % ∈ 5 → 7 which satisfies 
the given marginals.
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So Kolmogorov’s extension 
theorem gives us a way to 
implicitly define stochastic 

processes.

(However it does not tell us 
how to construct them.)  



20

Defining Gaussian Process
from finite-dimensional marginals.
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Characterizing Gaussian Process

Samples ! ∼ #$(&, () of a Gaussian Process are random functions
*: , → .

defined on the domain , (such as time , = ., or vectors , = .0).

We can also see them as an infinite collection *1 1∈3 indexed by ,.

Parameters are the Mean function &(4) and Covariance function ((4, 4′).
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For any !", !$, … , !& ∈ ( we define the following finite-dimensional 
distributions p *+,, *+-, … , *+. .

*+,, *+-, … , *+. ∼ 1( 3(45 5, 6 45, 47 5,7
)

Since they are consistent with each other, Kolmogorov’s extension 
theorem states that they define a unique stochastic process, we will call
Gaussian Process:

9 ∼ :;(3, 6)
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Some properties are immediate consequences of definition:
• ! "# = %(')
• )*+ "#, "#- = .[ "# − % ' "#1 − % '-

2
] = Σ(', '-)

• Any linear combination of distinct dimensions is still a 
Gaussian:

5
678

9
:6 ∗ "#< ∼ >(⋅,⋅)

Characterizing Gaussian Process
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Some properties are immediate consequences of definition:
• Stationarity: Σ ", "$ = Σ " − "$

does not depend on the positions
• Continuity: lim

*+→*
- ", "′ = - ", "

• Any linear combination is still a Gaussian:

/
012

3
40 ∗ 678 ∼ :(⋅,⋅)

Characterizing Gaussian Process
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Example Samples
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Posteriors of Gaussian Process.
How to use them for regression?
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http://chifeng.scripts.mit.edu/stuff/gp-demo/

Interactive Demo
need a volunteer
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Gaussian processes are very useful for 
doing regression on an unknown function !: 

" = !(%).

Say we don’t know anything about that function,
except the fact that it is smooth.
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Before observing any data, we represent our belief on the
unknown function f with the following prior:

! ∼ #$(&('), Σ(x, x,))

For instance & ' = 0 and Σ ', ', = / ⋅ exp(− 4546
7

87 )

Controls smoothness 
(bandwidth/length-scale)

Controls uncertainty

WARNING: Change of notation!
' is now the index and

!(') is the random function
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Now, assume we observe a training set 

!" = $%, $', … , $" , )" = )%, )', … , )"

and we want to predict the value )∗ = +($∗)
associated with a new test point $∗.

One way to do that is to compute
the posterior +|!", )" after observing the 

evidence (training set).
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Bayes’	Rule
+ , -., 0. ∝ +(0.|,, -.) +(,)

• Gaussian Process Prior: 
5 6 = 89 : ; , Σ x, x>

• Gaussian Likelihood: 
5 ?@ 6, A@ = B(6 A , CDE@)

• -> Gaussian Process Posterior: 
5 6|A@, ?@ = 89 :′ ; , Σ′ x, x>

for some :′(;), Σ′(;, ;>).

Remember: Gaussian Process is conjugate prior 
for Gaussian likelihood model.
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Bayes’	Rule
+ , -., 0. ∝ +(0.|,, -.) +(,)

• Gaussian Process Prior: 
5 6 = 89 : ; , Σ x, x>

• Dirac Likelihood: (? → 0)
5 BC 6, DC = E BC − 6 DC

that is, BC is now deterministic after observing 6, DC.
BC = 6 DC

• -> Gaussian Process Posterior: 
5 6|DC, BC = 89 :′ ; , Σ′ x, x>

for some :′(;), Σ′(;, ;>).
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The problem is there is no easy way to 
represent the parameters of the posterior

! " , Σ(", "&) efficiently. 

Instead of computing the full posterior (, 
we will just evaluate the posterior 

at one point )∗ = (("∗).

We want: , -∗ ./, -/, 0∗



We want: ! "∗ $%, "%, '∗

The finite-dimensional marginals of the 
Gaussian process give that:

"% | ∼ *( , )
"∗

$%
'∗

,($%)

,('∗)

.($%, $%) .($%, '∗)

.('∗, $%) .('∗, '∗)
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Theorem: For a Gaussian vector with distribution

the conditional distribution !"|!$ is given by

∼ &( , )!$
!"

)*
)+

,*,* ,*,+
,+,* ,+,+

∼ &( , )!$!" )+ + ,+,*,*,*/*(0* − )*) ,+,+ − ,+,*,*,*/*,*,+|
[Schur’s complement]

This Theorem will be useful for the 
Kalman filter, later on …



Applying the previous theorem gives us
the posterior !∗.

| ∼ %( , )(∗
()
*)
+∗

,- = ,(+∗) + 1(+∗, *))1 *), *) 23(*) − , *) )

1- = 1 +∗, +∗ − 1(+∗, *))1 *), *) 231(*), +∗)

,- 1



37

Active Learning with
Gaussian Process.
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Active Learning
Active Learning is iterative process:
• Generate a question !∗.
• Query the world with the question (by acting, can be costly)
• Obtain an answer #∗ = %(!∗).
• Improve model by learning from the answer.
• Repeat.
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Active Learning
Gaussian process is good for cases where it is expensive 
to evaluate !∗ = $ %∗ .
• Kriging. !∗ is the amount of natural resource, %∗ is new 

2D/3D location to dig. Every evaluation is mining and 
can cost millions.
• Hyperparameter optimization (Bayesian optimization). 
!∗ is the validation loss, %∗ is set of hyperparameters to 
test. Every evaluation is running an experiment and can 
take hours.
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http://chifeng.scripts.mit.edu/stuff/gp-demo/

Back to the demo
(Talk about utility function)
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Formal equivalence with
Kernelized Linear Regression.

[blackboard if time]

Rasmussen & Williams (2006)
http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Dirichlet Processes.
Stick Breaking Construction
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! = #
$%&

'(
)$*+,

-&, -/, … ∼223 !4
parameters, sampled 

from base distribution

) = ()&, )/, … ) ∼ !78(9)
scalar weights
sum up to 1

Diracs concentrate 
probability mass )$

at -$G is a random probability measure:
• random: both ) and - are random
• probability measure: it is a convex 

combination of Diracs, which are 
probability measures



44Courtesy of Khalid El-Arini
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Two independent samples ! from "#(%, !')

! = *
+,-

./
0+123

Each sample ! is a probability 
distribution (e.g. over parameters) and 
can be written as a mixture of diracs.

04

ΩΩ
6(-)

6(4)

6(-)

6(4)

04

07
08

09
0:

0-

07
0;

0:

0-

6:
(-)

6:
(4)
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Measuring is counting ! " = ∑%&'() *% ∗ 1{.% ∈ "}

*1

!1 2 = *3 + *5 + *6
!1 2 = 0.05+0.05+0.2=0.3

ΩΩ
.(')

.(1)

.(')

.(1)

*1

*5
*:

*;
*6

*'

*5
*3

*6

*'

!' 2 = *6 + *; + *:
!' 2 = 0.05+0.1+0.3=0.45

" "

For a fixed subset ", notice how G(A) is random.
In fact even the *% change value for each sample.
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How to generate an infinite sequence of (mixture) 
weights ! = !#, !%, … which sum up to 1?

we can use stick-breaking
! ∼ ()*(1, -)

To generate a finite sequence of (mixture) 
weights ! = !#, !%, …!/ that sum up to 1, 

we can use the Dirichlet distribution
! ∼ 01213ℎ567(-#, … , -/)



Beta Distribution
!" ∼ $%&' (, *
!+ = 1 − !"

/ !" (, * ∝ !"12" 1 − !" 32"

Equivalent to:
!", !+ ∼ 4565789%& (, *
/ !", !+ (, * ∝ !"12"!+32"

(, * → +∞ gives peaked distribution around (/(( + *)
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Stick Breaking ! ∼ #$%(')

!)

1
1 − !)

!) 1 − !) − !,!,

!) !, !-

!) !, !-

…

!/ …

0) ∼ 1234 1, ' !) = 0)

0, ∼ 1234 1, ' !, = 0,(1 − !))
0- ∼ 1234 1, '

!- = 0,(1 − !) − !,)

Griffiths, Engen, McCloskey
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Defining Dirichlet Process
from finite-dimensional marginals.
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Dirichlet Process
Samples ! ∼ #$(&, !() of a Dirichlet Process 
are themselves probability measures (i.e. 
distributions) over a measurable space (Ω, ℱ).

,:ℱ → /0
which associate a probability to every 
measurable subset 1 ∈ ℱ.

Note: ℱ is the set of all measurable subsets 
1 ⊆ Ω.

Parameters are the base probability 
distribution !( (over Ω) and the parameter 
& > 0.

Ω
6(7)

6(8)

98

9:
9;

9<
9=

97

1
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Kolmogorov Consistency Construction
For any ! ≥ 0 , consider any partition $%, $', … , $) of the space Ω. We define 
the following finite-dimensional distributions
+($%), … , +($)) ∼ /0102ℎ456(7 ∗ 9: ;< , … , 7 ∗ 9:(;=))

Since they can be proved* to be consistent with each other, Kolmogorov’s 
extension theorem states that they define a unique stochastic process, we will 
call Dirichlet Process:

9 ∼ >?(7, 9:)
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Here !", !$, !% is a partition of the parameter space Ω. 
Assume ' = 10, +, = - 0, .$ .
Draw two distributions +", +$ ∼112 34 ', +, .

First sample
+" !" = 56 + 58 + 59
+" !$ = 5$ + 5:
+" !% = 5"

Second sample 
+$ !" = 5% + 5: + 56

+$ !$ = 5$
+$ !% = 5"

Probability masses for base distribution (deterministic)
+, !" = - 0, .$ !" = 0.8
+, !$ = - 0, .$ !$ = 0.2
+, !% = - 0, .$ !% = 0.2

Then we have that
+ !" , + !$ , + !% ∼ =>?>@ABCD(8,2,2)

Ω
G(")

G($)

5$

5:
59

58
56

5"

!"

!%!$

Ω
G(")

G($)

!"

!%!$

5$

5:
5%

56

5"
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All constructions match.

It can be shown that Stick-
Breaking and Kolmogorov 

consistency definitions 
match.

https://www.stat.ubc.ca/~bouchard/courses/stat547-sp2011/notes-part2.pdf

https://www.stat.ubc.ca/~bouchard/courses/stat547-sp2011/notes-part2.pdf
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Defining Dirichlet Process
from Chinese Restaurant Process

/BlackWell-McQueen Urn.
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

!" = $%&'()*({-&.ℎ, 1()2, 3('4})
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 1 arrives.  
• Takes any free table.
• Sample a dish !" ∼ $%-> Tofu
• state={{1}}, n=1 customers

1
Tofu
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 2 arrives.  
• P(new table)∝ α
• P(table {1})∝ 1 = 1
• Decides to sit at {1}
• Share dish: '( = ') =Tofu
• {{1,2}}, n=2 customers

1
2Tofu
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 3 arrives.  
• P(new table)∝ α
• P(table {1,2})∝ 1,2 = 2
• Decides to sit at new table
• Sample a dish )* ∼ ,--> Pork
• {{1,2},{3}}, n=3 customers

1

2

3

Tofu

Pork
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 4 arrives.  
• P(new table)∝ α
• P(table {1,2})∝ 1,2 = 2
• P(table {3})∝ 3 = 1
• Share dish, *+ = *, =Tofu
• {{1,2,4},{3}}, n=4 customers

1
2

3

4

Tofu

Pork
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 5 arrives.  
• P(new table)∝ α
• P(table {1,2,4})∝ 1,2,4 = 3
• P(table {3})∝ 3 = 1
• Pick new table
• Sample new dish +, = -./ℎ
• {{1,2,4},{3},{5}}, n=5 customers

1

2

3

4

5Tofu

Pork

Fish
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 6 arrives.  
• P(new table)∝ α
• P(table {1,2,4})∝ 1,2,4 = 3
• P(table {3})∝ 3 = 1
• P(table {5})∝ 5 = 1
• Pick table {1,2,4}
• Share dish ,- = ,. = /012
• {{1,2,4,6},{3},{5}}, n=6 customers

1

2

3

4

5

6

Tofu

Pork

Fish



Chinese Restaurant Process (CRP)
We can look at the 
sequence of dishes

!" = $%&'
!( = $%&'
!) = *%+,
!- = $%&'
!. = /01ℎ
!3 = $%&'

It can be shown that the 
distribution of !4 4 is 
exchangeable. That is:

5 !" = '", !( = '(,… =
5 !" = '8("), !( = '8((), …

The order in which the customers 
arrive is actually not important.
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De Finetti’s Theorem

M. I. Jordan NIPS 2017 
Tutorial
http://faculty.dbmi.pitt.
edu/day/Bioinf2132-
advanced-Bayes-and-
R/Bioinf2132-
documents-2017/2017-
11-30/nips-
tutorial05.pdf

http://faculty.dbmi.pitt.edu/day/Bioinf2132-advanced-Bayes-and-R/Bioinf2132-documents-2017/2017-11-30/nips-tutorial05.pdf
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De Finetti’s Theorem
Applied to the CRP, it means there exist a unique* random variable !, such 
that all " become independent conditionally to !.

We can show that !~$%(', !))!

Here: +, =
.

/
01234 + .

/
05678 + .

/
0961:, ; is the same (∝ =>? @ABC>)

Let D = D., DE, … ∼ HIJ(') stick-breaking.
Sample " = "8K., "8KE, … ∼22L H,
Now we can form our random measure H = ∑8K.

NO D8 ∗ 0QR.
And we sample "2K., "2KE , … ∼22L H

*Unique in distribution.

"2 is the parameter for data point S (customer S)
"8 is the parameter for component T (table T)
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Blackwell-McQueen Urn
Polya Urn
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Same process, different story.

Each dish is a set of unique ball colors.

Each customer is a successive draw.
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Using Dirichlet Process
for infinite mixture models.
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Chinese Restaurant Process (CRP)

…
Infinity of Components

!" = $(&", Σ")
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Sample parameter for data point 1.
• Takes any free table.
• Sample a parameter !" ∼ $%
• state={{1}}, n=1 customers

1
&'() = (),−.)
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Sample parameter for data point 2.
• P(new table)∝ α
• P(table {1})∝ 1 = 1
• Decides to sit at {1}
• Share dish: '( = ') =Tofu
• {{1,2}}, n=2 customers

1
2*+,- = (-,−1)
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Sample parameter for data point 3.
• P(new table)∝ α
• P(table {1,2})∝ 1,2 = 2
• Decides to sit at new table
• Sample a dish )* ∼ ,--> Pork
• {{1,2},{3}}, n=3 customers

1
2

3

./01 = (1,−4)

./01 = (6, 1)
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 4 arrives.  
• P(new table)∝ α
• P(table {1,2})∝ 1,2 = 2
• P(table {3})∝ 3 = 1
• Share dish, *+ = *, =Tofu
• {{1,2,4},{3}}, n=4 customers

1
2

3

4

-./0 = (0,−3)

-./0 = (5, 0)
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 5 arrives.  
• P(new table)∝ α
• P(table {1,2,4})∝ 1,2,4 = 3
• P(table {3})∝ 3 = 1
• Pick new table
• Sample new dish +, = -./ℎ
• {{1,2,4},{3},{5}}, n=5 customers

1
2

3

4

51234 = (4,−7)

1234 = (9, 4)

1234 = (:,−4)
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Chinese Restaurant Process (CRP)

…
Infinity of Tables

• Customer 6 arrives.  
• P(new table)∝ α
• P(table {1,2,4})∝ 1,2,4 = 3
• P(table {3})∝ 3 = 1
• P(table {5})∝ 5 = 1
• Pick table {1,2,4}
• Share dish ,- = ,. = /012
• {{1,2,4,6},{3},{5}}, n=6 customers

1

2

3

4

5

6

3456 = (6,−9)

345; = (<, 6)

3459 = (;,−6)
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Ω "($)

"(&)

'$
'&

'(

)*+, = (,,−0)

)*+1 = (2, ,)

)*+0 = (1,−,)

What does G look like?
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We can describe a generative 
process of data points.

(but first let’s recall the generative process for GMM)
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