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Stochastic Process

Random Function



* Motivate Gaussian and Dirichlet distribution in Bayesian Framework.
* Kolmogorov’s extension theorem.

* Define Gaussian Process and Dirichlet Process from finite-dimensional marginals.

* Gaussian Process:
* Motivating Applications: Kriging, Hyperparameter optimization.
* Properties: Conditioning/Posterior distribution.
* Demo.

e Dirichlet Process:

* Motivating Application: Clustering with unknown number of clusters.
e Construction: stick-breaking, Polya urn, Chinese Restaurant Process.
* De Finetti theorem.

* How to use.

* Demo.



Disclaimer

| will be skipping the more theoretical building
blocks of stochastic processes (e.g. measure
theory) in order to be able to cover more
material.



Recall some distributions

Gaussian Distribution

Samples X in R<.

Dirichlet Distribution

Samples T in Simplex A, _4




Why Gaussian and Dirichlet?

They are often used as priors



Bayesians like to use those
distributions as priors
over model parameters p(x)

Why?



Because they are very convenient
to represent/update.

Conjugate Priors



p(O]x) x p(x|6)p(0O)

Posterior Likelihood Prior
model

Conjugate Prior means:
Posterior in same family as prior



p(O]x) x p(x|0)p(6)

/ ‘~ \
Prior
f|x ~ Gaussian(u, X)

Likelihood
x|6 ~ Gaussian(0,X;)

Posterior
f|x ~ Gaussian(u', X"

(Gaussilan is conjugate prior for
Gaussian likelihood model.



p(O]x) x p(x|0)p(6)

/ ‘~ \
Prior

, 8|x ~ Dirichlet(a)

) Likelihood

x|6 ~ Categorical(0)

Posterior
O|x ~ Dirichlet(«

Dirichlet is conjugate prior for
Categorical /Multinoulli likelihood model.



So taking the posterior is simply
a matter of updating
the parameters
of the prior.



Back to Gaussian and Dirichlet

Gaussian Distribution

Samples X in R<.

Dirichlet Distribution

Samples T in Simplex A, _4




Gaussian and Dirichlet
are indexed with a

finite set of integers {1, ..., d}
They are random vectors.

(X1, X5, ..., X3)
(T, 1T, ..., T)



Can we index random variables
with infinite sets as well?

In other words,
define random functions.



Defining stochastic processes
from their marginals.



Suppose we want to define a random function
(stochastic process)

X:tel » R,

where T is an infinite set of indices.

Imagine a joint distribution over all the (X;).



Kolmogorov Extension Theorem

informal statement

Assume that for any k = 1, and every finite subset of
indices (t4, ty, ..., t; ), we can define a marginal
probability (finite-dimensional distribution)

Pt t,,..., tk(th:th:-":th)
Then, if all marginal probabilities agree, there exists a

unique stochastic process X:t € T — R which satisfies
the given marginals.
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So Kolmogorov’s extension

theorem gives us a way to

implicitly define stochastic
processes.

(However it does not tell us
how to construct them.)




Defining Gaussian Process
from finite-dimensional marginals.



Characterizing Gaussian Process

Samples X ~ GP(u, X) of a Gaussian Process are random functions
X:T >R
defined on the domain T (such as time T = R, or vectors T = R%).

We can also see them as an infinite collection (X;);er indexed by T.

Parameters are the Mean function p(t) and Covariance function (¢, t").



For any tq, t,, ..., t; € T we define the following finite-dimensional
distributions p(th,th, ,th).

Xep Xeys s X ~ N (08, (2(t017)) )

Since they are consistent with each other, Kolmogorov’s extension
theorem states that they define a unique stochastic process, we will call

Gaussian Process:

X ~GP(u,x)
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Characterizing Gaussian Process

Some properties are immediate consequences of definition:
* E[X:] = u(t)

 Cov(Xy Xe) = E[(Xe — u(0) (Xp — u(t)) ] = 5(t,t")

* Any linear combination of distinct dimensions is still a
Gaussian:

k
a; * Xti ~ N(')
=1

l



Characterizing Gaussian Process

Some properties are immediate consequences of definition:
e Stationarity: X(¢t,t') = 2(t —t')

does not depend on the positions
« Continuity: }}Tt X(t, t") = X(¢,t)

* Any linear combination is still a Gaussian:
k

> Xy ~ N ()

=1



Example Samples

om the GP prior

Ten samples fr




Posteriors of Gaussian Process.
How to use them for regression?



Interactive Demo

need a volunteer

http://chifeng.scripts.mit.edu/stuff/gp-demo/



Gaussian processes are very useful for
doing regression on an unknown function f:

y = f(x).

Say we don’t know anything about that function,
except the fact that it is smooth.



Before observing any data, we represent our belief on the
unknown function f with the following prior:

f~ GP(u(x), 2(x,x))

For instance u(x) = 0Oand Z(x,x") = C - exp(

2
[l

)

o2

Controls uncertainty

WARNING: Change of notation! Controls smoothness
: , (bandwidth/length-scale)
x is now the index and

f(x) is the random function 2



Now, assume we observe a training set

Xn — (x1»x2» ...,Xn), Yn = (le Y2, ""yn)

and we want to predict the value y* = f(x™)
associated with a new test point x™.

One way to do that is to compute
the posterior f|X,,, y,, after observing the
evidence (training set).



Bayes’ Rule
P(f1Xn yn) < p(Yalf, X3) P(f)

Gaussian Process Prior:

p(f) = GP(u(x),Z(x,x"))

Gaussian Likelihood:

p(lf, X)) = N(f(X), e*L)
-> Gaussian Process Posterior:

p(f1Xn yn) = GP(1' (x), 2’ (x,x"))
for some u'(x),Z'(x, x").

Remember: Gaussian Process is conjugate prior
for Gaussian likelihood model.




Bayes’ Rule
P(f1Xn yn) < p(Yalf, X3) P(f)

Gaussian Process Prior:

p(f) = GP(u(x), 2(x,x"))
Dirac Likelihood: (¢ — 0)

p(ynlf’ Xn) — 5(yn — f(Xn))
that is, y,, is now deterministic after observing f, X,,.

Yn = f(Xn)
-> Gaussian Process Posterior:

p(f1Xn yu) = GP(1' (%), Z'(x,X"))
for some u'(x), Z'(x, x").
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The problem is there is no easy way to
represent the parameters of the posterior
u(x),Z(x, x") efficiently.

Instead of computing the full posterior f,
we will just evaluate the posterior

at one point y* = f(x™).

We want: p(y*|X,,, ¥, X*)



We want: p(y*|X,,, ¥, X*)

The finite-dimensional marginals of the
Gaussian process give that:

oo
p(x)

X(x*, X,) X(x*,x")

X *

y



Theorem: For a Gaussian vector with distribution
Y12

A el R

X, Uy 221 222

the conditional distribution X, |X; is given by

%

~ N + X 2_1 X1 — 1
l ([12 2,1 1,1( 1 ”’1) ) 22,2—22,121&21,2 )

This Theorem will be useful for the
Kalman filter, later on ... [Schur’s complement] *



Applying the previous theorem gives us
the posterior y~.

po=p(x) + 2, X)) EX Xn) T (X — (X))

X =X(x"x) - Z(x5 X)X, X)) 12 (X, xH)



Active Learning with
Gaussian Process.



Active Learning

Active Learning is iterative process:

* Generate a question x”.

 Query the world with the question (by acting, can be costly)
* Obtainananswer y* = f(x™).

* Improve model by learning from the answer.
* Repeat.



Active Learning

Gaussian process is good for cases where it is expensive

to evaluate y* = f(x™).

* Kriging. y* is the amount of natural resource, x* is new
2D/3D location to dig. Every evaluation is mining and
can cost millions.

* Hyperparameter optimization (Bayesian optimization).
y™ is the validation loss, x™ is set of hyperparameters to
test. Every evaluation is running an experiment and can
take hours.



Back to the demo

(Talk about utility function)

http://chifeng.scripts.mit.edu/stuff/gp-demo/



Formal equivalence with

Kernelized Linear Regression.
Iblackboard if time]

Rasmussen & Williams (2006)
http://www.gaussianprocess.org/gpml/chapters/RW2.pdf



http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

Dirichlet Processes.
Stick Breaking Construction



T = (1, Ty,...) ~ GEM ()

scalar weights
sumup tol

61, 82, Niid GO

parameters, sampled
from base distribution

o |
E Ty 0g,
- \ Diracs concentrate

probability mass my,

. - at 0,
G is a random probability measure:

 random: both m and 6 are random

e probability measure: it is a convex
combination of Diracs, which are
probability measures
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Dirichlet Process

» Consider Gaussian G,

,.,-—""""/ \

Courtesy of Khalid EI-Arini 44



Two independent samples G from DP(«a, G)

g (1)

gD

distribution (e.qg. over parameters) and

5
: .. +
Each sample G is a probability -
G = Z ﬂk(Sgk
can be written as a mixture of diracs. k=1



Measuring is counting G(A) = .12 m, * 1{6,, € A}

G{(A) =g + g + g G,(A) =13+ my + 1
G,(A) = 0.05+0.1+0.3=0.45 G,(A) = 0.05+0.05+0.2=0.3

For a fixed subset A, notice how G(A) is random.
In fact even the m;, change value for each sample. L



To generate a finite sequence of (mixture)
weights m = m, ,, ... T3, that sum up to 1,
we can use the Dirichlet distribution
m ~ Dirichlet(aq, ..., ay)

How to generate an infinite sequence of (mixture)
weights ™ = 14, 5, ... Which sum up to 17
we can use stick-breaking
m~GEM(1, a)



Beta Distribution

m; ~ Beta(a, ) e . |
24 ¢ a=p=05 —
77:2 — 1 - 77:1 s | g:?gzé g— H/‘
p(mila, f) « ﬂf_l(l — ﬂl)ﬁ_l cl asihs — |/
el
1.2 F
Equivalent to: os |
., T, ~ Dirichlet(a, §) ol
a—1 ﬁ —1 0.2 ™
p(my, mzla, f) <y m; e TR TR TR YRy r——

a, f — +oo gives peaked distribution around a/(a + )



Stick Breaking m ~ GEM ()

Vl ~ Beta(l, C() Ty = Vl

Vz ~ Beta(l, a) Ty, = Vz(l — 7T1)
Vs, ~ Beta(1, a)

3 = V(1 —my —my)

Griffiths, Engen, McCloskey
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Defining Dirichlet Process
from finite-dimensional marginals.



Dirichlet Process

Samples G ~ DP(a, G) of a Dirichlet Process

are themselves probability measures (i.e. H (2)
distributions) over a measurable space (), F).

G:F - R,

which associate a probability to every
measurable subset A € F.

Note: F is the set of all measurable subsets
A C ().

Parameters are the base probability
distribution G (over (1) and the parameter
a > 0.



Kolmogorov Consistency Construction

Forany k = 0, consider any partition A4, 4,, ..., A;, of the space (). We define
the following finite-dimensional distributions

G(Al), cer ) G(Ak) ~ DlTlChl@t(a * Go(Al), een , O X GO(Ak))

Since they can be proved™ to be consistent with each other, Kolmogorov’s
extension theorem states that they define a unique stochastic process, we will
call Dirichlet Process:

G ~ DP(a, Go)



Here A4, A,, A5 is a partition of the parameter space ().
Assume a = 10,G, = N (0, 1,).
Draw two distributions G, G, ~;;iq DP(a, G,).

First sample
G1(A)) =1 + Mg + g
G1(Ay) =1y + 1y
G1(A3) =my
Second sample
G(A1) = T3 + 1y + 75
G,(Az) = m,
G,(A3) = 1y
Probability masses for base distribution (deterministic)
GO(Al) = NV (0, 12)(A1) = 0.8
Go(Az) = N(0,1)(A;) = 0.2
Go(A3) = N (0,1;)(A43) = 0.2
Then we have that
G(A,),G(A,),G(A3) ~ Dirichlet(8,2,2)
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All constructions match.

It can be shown that Stick-
Breaking and Kolmogorov
consistency definitions
match.

https://www.stat.ubc.ca/~bouchard/courses/stat547-sp2011/notes-part2.pdf



https://www.stat.ubc.ca/~bouchard/courses/stat547-sp2011/notes-part2.pdf

Defining Dirichlet Process

from Chinese Restaurant Process
/BlackWell-McQueen Urn.



Chinese Restaurant Process (CRP)

Infinity of Tables

Go = Uniform({Fish, Pork,Tofu})



Chinese Restaurant Process (CRP)

Infinity of Tables

Customer 1 arrives.

Takes any free table.

Sample a dish 68; ~ Gy-> Tofu
state={{1}}, n=1 customers



Chinese Restaurant Process (CRP)

i

J

Infinity of Tables

Customer 2 arrives.

P(new table)x o

P(table {1})x [{1}| =1
Decides to sit at {1}

Share dish: 8, = 6; =Tofu
{{1,2}}, n=2 customers



Chinese Restaurant Process (CRP)

§ M

Pork w3

Infinity of Tables

Customer 3 arrives.

P(new table)x o

P(table {1,2})cc |{1,2}| = 2
Decides to sit at new table
Sample a dish 83 ~ Go-> Pork
{{1,2},{3}}, n=3 customers



Chinese Restaurant Process (CRP)

Infinity of Tables
. w
®
w w 2 o000
1 4

o
* Customer 4 arrives.

w * P(new table)x o

Pork 3 e P(table {1,2}))x |{1,2}| = 2

* P(table {3})x |{3}| =1

Share dish, 8, = 6; =Tofu
{{1,2,4},{3}}, n=4 customers



Chinese Restaurant Process (CRP)
U

T,

A

Pork w3

]

Infinity of Tables

Fish

Customer 5 arrives.

P(new table)x o

P(table {1,2,4})x |{1,2,4}| = 3
P(table {3})e< |{3}| =1

Pick new table

Sample new dish 8z = Fish
{{1,2,4},{3},{5}}, n=5 customers



Chinese Restaurant Process (CRP)

Infinity of Tables
®

IH!e ,m 2 5 Fish

1 w

6 4

Customer 6 arrives.

® * P(new table)x o
e P(table {1,2,4})x [{1,2,4}| =3
w * P(table {3})x |{3}| =1
Pork 3 *  P(table {5}) |{5}] = 1
Pick table {1,2,4}

Share dish 6, = 60, =Tofu
{{1,2,4,6},{3},{5}}, n=6 customers



Chinese Restaurant Process (CRP)

We can look at the It can be shown that the
sequence of dishes distribution of (8;); is
0; =Tofu exchangeable. That is:
0, =Tofu p(6L =uy,0; = Uy, ...) =
03 = Pork p(@l — ua(l), 02 — uO'(Z)' )
0, =Tofu
05 = Fish The order in which the customers

=Tofu arrive is actually not important.



De Finetti’s Theorem

e Suppose that we agree that if our data are reordered, it doesn’t matter

— this is generally not an assertion of “independent and identically

distributed”; rather, it is an assertion of “exchangeability”
. o N o _ _ M. I. Jordan NIPS 2017
e Exchangeability: the joint probability distribution underlying the data is Tutorial

Invariant to permutation http://faculty.dbmi.pitt.

edu/day/Bioinf2132-
advanced-Bayes-and-
R/Bioinf2132-
documents-2017/2017-

p(ml, Lo, ..., a:N) = f (H p(;{ji | 9)) dP(Q) 11-30/nips-

tutorial05.pdf

Theorem (De Finetti, 1935). If (x1,22,...) are infinitely exchangeable,
then the joint probability p(x1, xo, . .., x ) has a representation as a mixture:

for some random variable 6.

e |l.e., if you assert exchangeability, it is reasonable to act as if there is an
underlying parameter, there is a prior on that parameter, and the data are

conditionally [ID given that parameter
64


http://faculty.dbmi.pitt.edu/day/Bioinf2132-advanced-Bayes-and-R/Bioinf2132-documents-2017/2017-11-30/nips-tutorial05.pdf

De Finetti’s Theorem

Applied to the CRP, it means there exist a unique™* random variable G, such
that all 8 become independent conditionally to G.

We can show that G~DP(«, G)!

1 1 1 .
Here: Gy = §5fl-sh + gdpo,,k + §5tofu, « is the same (< new table)
Let m = (7, 5, ... ) ~ GEM(@) stick-breaking.
Sample 8 = (Oy=1,05=2,...) ~iig Go
Now we can form our random measure G = Y./, m, * 0g, -
And we sample 8;_.,0,_-, ... ~;:;, G
P 1=1¥1=2" lid 0; is the parameter for data point i (customer i)
0, is the parameter for component k (table k)

*Unique in distribution.



Blackwell-McQueen Urn
Polya Urn



Same process, different story.
Each dish is a set of unique ball colors.

Each customer is a successive draw.



Using Dirichlet Process
for infinite mixture models.



Chinese Restaurant Process (CRP)

Infinity of Components

Go = N (g, Zo)



Chinese Restaurant Process (CRP)

Infinity of Tables

Sample parameter for data point 1.
Takes any free table.

Sample a parameter 6; ~ Gy
state={{1}}, n=1 customers



Chinese Restaurant Process (CRP)

A

J

Infinity of Tables

Sample parameter for data point 2.
P(new table)x o

P(table {1})x [{1}| =1

Decides to sit at {1}

Share dish: 8, = 6; =Tofu

{{1,2}}, n=2 customers



Chinese Restaurant Process (CRP)

L

9k=1 — (O' 1) w 3

Infinity of Tables

Sample parameter for data point 3.
P(new table)x o

P(table {1,2})cc |{1,2}| = 2
Decides to sit at new table

Sample a dish 683 ~ Gy-> Pork
{{1,2},{3}}, n=3 customers



Chinese Restaurant Process (CRP)

Infinity of Tables
. w
®
w 2 00
1 T4
o
* Customer 4 arrives.
* P(new table)x o
0;-1 = (0,1) 3 * P(table {1,2})x |{1,2}| = 2
* P(table {3})x |{3}| =1

Share dish, 8, = 6; =Tofu
{{1,2,4},{3}}, n=4 customers



Chinese Restaurant Process (CRP)

T

w w Infinity of Tables
2 > Or-1 = (2,—1)

A

Customer 5 arrives.

® e P(new table)x o
w . P(table {1,2,4})x |{1,2,4}| = 3
* P(table {3})x |{3}| =1
Or-1=(0,1) 3 * Pick new table

Sample new dish 8z = Fish
{{1,2,4},{3},{5}}, n=5 customers



Chinese Restaurant Process (CRP)

Infinity of Tables
w o mll) 303 = (2,-1)
A

6 4

Customer 6 arrives.

® * P(new table)x o
e P(table {1,2,4})x [{1,2,4}| =3
w * P(table {3})x |{3}| =1
Or-2 = (0,1) 3 * P(table {5})x |{5}| =1
Pick table {1,2,4}

Share dish 6, = 60, =Tofu
{{1,2,4,6},{3},{5}}, n=6 customers



6 (2)

What does G look like?




We can describe a generative
process of data points.

(but first let’s recall the generative process for GMM)
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