today: - continue Bayesian approach
- MLE

(continuation from last class):

posterior belief $p(\theta | X=x)$ contains all the info from data that we need to answer new questions

E.g. question: what is probability of head (F=1) on next flip?

as frequentist: $p(F=1|\theta) = \hat{\theta}$

as a Bayesian: $p(F=1|X=x) = \int_{\theta} p(F=1, \theta | X=x) d\theta$

\[p(x_i, y(z)) = p(z | x_i, z) p(y | z)\]

\[p(\hat{\theta}, y | z, w) = p(z | y, z, w) p(y | z, w)\]

\[
\mathbb{E}[\theta | X=x] = \int_{\theta} p(\theta | X=x) d\theta = \mathbb{E}[\hat{\theta} | X=x]
\]

a meaningful Bayesian estimator of θ
A meaningful Bayesian estimator of θ

$$\hat{\theta}_{\text{Bayes}}(x) \triangleq \mathbb{E}[\theta | X=x] \quad \text{(posterior mean)}$$

(notation: $\hat{\theta}$ is observation $\rightarrow \theta$)

Our coin example:

$$p(\theta | X=x) = \text{Beta}(\theta | \alpha = x+1, \beta = n-x+1)$$

Prior

$$p(\theta) = \text{uniform}(\theta)$$

Thus

$$\mathbb{E}[\hat{\theta}_{\text{Bayes}}(x)] = \mathbb{E}[\theta | X=x] = \frac{x+1}{n+2}$$

This is biased

In frequentist statistics: Consider multiple possible estimators

- **MLE**
 - moment matching
 - Bayesian posterior mean

But asymptotically unbiased

$i.e.$

$$\mathbb{E}_X[\hat{\theta}_{\text{Bayes}}(x)] = \theta$$
and then analyze their statistical properties.

- biased?
- variance?
- consistent?

Maximum Likelihood Principle

setup: given a parametric family \(p(x; \theta) \) for \(\theta \in \Theta \)

- we want to estimate \(\theta \)

\[
\hat{\theta}_{ML}(x) = \arg \max_{\theta \in \Theta} p(x; \theta)
\]

\[
\Delta \hat{\theta}_{ML}(x) \subseteq \text{L}(\theta)
\]

\[
\text{"likelihood function" of } \theta
\]

Example: \(n \) coin flips \(x \)

\(x \sim \text{Bin}(n, \theta) \)

\[p(x; \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \]

trick: to maximize \(\log L(\theta) \) instead of \(L(\theta) \)
Justification: \(\log(\cdot) \) is strictly increasing

\[\text{i.e. } a < b \iff \log a < \log b \]

\[\Rightarrow \arg\max_{\theta \in \Theta} \log p(x; \theta) = \arg\max_{\theta \in \Theta} p(x; \theta) \]

\[\log p(x; \theta) = \log \left(\frac{p(x)}{p(\theta)} \right) + x \log \theta + (n-x) \log (1-\theta) = 0(\theta) \]

\[f'(\theta) = 0 \]

\[f''(\theta) < 0 \]

\[\text{look for } \theta \text{ s.t. } \left. \frac{\partial^2 f}{\partial \theta^2} \right|_{\theta=0} = 0 \]

\[\text{i.e. } \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0 \]

\[x(1-\theta) - \theta(n-x) = 0 \]

\[\Rightarrow \theta = \frac{x}{n} \]

\[\text{here } \frac{\partial^2 f}{\partial \theta^2} \bigg|_{\theta=0} = \frac{x}{n} \]

\[\text{i.e. relative frequency} \]

Some optimization comments:

- \(f'(\theta) = 0 \) is necessary condition for a local max when \(\theta \) is in interior of \(\Theta \)

- Also need to check \(f''(\theta) < 0 \) for a local max
also need to check $f''(c) < 0$ for a local min

$\nabla f(c) = 0$

only local result in general

but if $f''(c) < 0 \forall c \in G$, function is said "concave"

in this case, $f(c) = 0$ is sufficient for global max

be careful with boundary cases i.e. $c \in \text{boundary}(G)$

e.g.

another example $G = [0, 1]$

Some notes about MLE

- does not always exist $[G \in \text{bd}(G)$ but G is open] or when $G = +\infty$

e.g. $G = [0, 1]$

- is not necessary unique [i.e. multiple maxima]
Example 2: Multinomial distribution

Suppose X_i is discrete R.V. on K choices

\[\pi \in \Delta_K \]

We could choose \(\mathbb{E}X_i = \varepsilon_1, \ldots, K \varepsilon_K \)

but instead, convenient to encode with unit basis in \(\mathbb{R}^K \)

i.e. \(\mathbb{E}X_i = \varepsilon_1, \ldots, K \varepsilon_K \) where \(\varepsilon_j \in \mathbb{R}^K \) "one hot encoding"

\[\varepsilon_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \]

Parameter for discrete R.V. X_i:

\[\pi \in \Delta_K \]

\[\Delta_K = \left\{ \pi \in \mathbb{R}^K : \pi_j > 0 \forall j, \frac{1}{K} \sum_{j=1}^{K} \pi_j = 1 \right\} \]

Probability simplex on K choices

We will write $X_i \sim \text{Mult}(\pi)$ "Multinomial"

Consider $X_i \overset{iid}{\sim} \text{Mult}(\pi)$

Then \(\mathbb{E}X = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \text{Mult}(n, \pi) \)

"Multinomial distribution"
\[\Omega_{\chi} = \{ (\eta_1, \ldots, \eta_k) \mid \exists \eta_i \in \mathbb{N}, \sum_{i=1}^{k} n_i = n \} \]