today: - logistic regression
 - numerical optimization
 IRLS

Logistic regression model:
\[
Y = \mathcal{N}(0, 1)^2
\]
\[
p(y=1|x) = \sigma(w^Tx)
\]
\[
p(y=0|x) = 1 - \sigma(w^Tx) = \sigma(-w^Tx)
\]
\[\text{i.e. } Y | X=x \text{ is Bernoulli } (\sigma(w^Tx))\]
\[
p(y|x) = \sigma(w^Tx)^y \sigma(-w^Tx)^{1-y}
\]

Given \((x_i, y_i)_{i=1}^n \), maximum conditional likelihood:
\[
l(w) = \sum_{i=1}^n \log p(y_i|x_i; w) = \sum_{i=1}^n \left[y_i \log \sigma(w^Tx_i) + (1-y_i) \log \sigma(-w^Tx_i) \right]
\]

derivative
\[
\frac{\partial}{\partial w} (w) = \sigma(w^Tx) \sigma(-w^Tx)
\]
\[
\nabla_w \sigma(w^Tx_i) = x_i \left[\sigma(w^Tx_i) \sigma(-w^Tx_i) \right] \quad \text{Let } \nu_i = \omega^T x_i
\]
\[
\nabla l(w) = \sum_{i=1}^n x_i \left[y_i \frac{\partial}{\partial \nu_i} \sigma(-\nu_i) - (1-y_i) \frac{\partial}{\partial \nu_i} \sigma(\nu_i) \right] \left[y_i \left[\sigma(-\nu_i) + \sigma(\nu_i) \right] - \sigma(\nu_i) \right] - \sigma(\nu_i)
\]
\[\nabla l(w) = \sum_{i=1}^{n} x_i \left[y_i - \sigma(w^T x_i) \right] \]

solve for \(\nabla l(w) = 0 \) \(\Rightarrow \) need to solve a transcendental eq.

because \(\frac{1}{1 + e^{w^T x_i}} \) need to solve for \(w \)

contrasted to least square regression:
\[\nabla l(w) = \sum_{i=1}^{n} x_i \left[y_i - \sigma(w^T x_i) \right] \]
linear in \(w \)

\underline{numerical optimization}

want to minimize \(f(w) \)
\[\min_{w \in \mathbb{R}^q} f(w) \]

1) \underline{gradient descent} (1st order method)

\[w_{t+1} = w_t - \eta \nabla f(w_t) \]

step-size
step-size rules:

a) constant step-size \(\alpha_t = \frac{1}{L} \) Lipschitz constant of \(\nabla f \)
\[\| \nabla f(w_t) - \nabla f(w) \| \leq L \| w - w_t \| \]

b) decreasing step-size rule: \(\alpha_t = \frac{\gamma}{t} \) constant
usually want: \(\lim_{t \to \infty} \alpha_t = 0 \)
\[\gamma > 0 \]
direction for update (e.g. \(\nabla f(w_t) \))

c) choose \(\alpha_t \) by "line search" : \(\min_{\delta \in \mathbb{R}} \{ f(w_t + \alpha t \delta) \} \)
\[\text{costly in general} \]
instead do approximate search (e.g. Armijo line search)
(see Boyd's book)

2) Newton's method (2nd order method)
motivation: minimizing a quadratic approximation:

Taylor expansion:
\[f(w) = f(w_t) + (\nabla f(w_t))^T (w - w_t) + \frac{1}{2} (w - w_t)^T H(w_t) (w - w_t) \]
\[+ O(\| w - w_t \|^3) \]
\[= Q_t(w) + O(\| w - w_t \|^3) \]
\[\text{Taylor's remainder} \]
(\omega_n \rightarrow \text{minimizing } Q(t, \omega))

\nabla_{\omega} Q(t, \omega) = 0

\nabla f(\omega_t) + H(\omega_t)(\omega - \omega_t) = 0

\Rightarrow \omega_{t+1} = \omega_t - H^{-1}(\omega_t) \nabla f(\omega_t)

- Inverse Hessian \rightarrow O(d^3) \text{ time to compute in general}
- O(d^2) \text{ space}

\text{Newton's update}

\text{Damped Newton: you add a stepsize to stabilize Newton's method}

\omega_{t+1} = \omega_t - \alpha H^{-1}(\omega_t) \nabla f(\omega_t)

\text{why Newton's method?}

- much faster convergence in $\# \text{ of iterations }$ vs gradient descent
- affine invariant \rightarrow invariant by rescaling of variables
- Newton is transforming space

\text{Good sets for } f(\omega) \text{ using Hessian to make it...}
\[z = \mathbf{H}^{-1} \alpha \]
\[\nabla f(z) = \mathbf{H}^{-1} \nabla f(\alpha) \]
\[\frac{1}{2} x^T \mathbf{H} x = c \]
\[\frac{1}{2} x^T \mathbf{P}^T \mathbf{P} x < c \]

Look at "quadratic forms"

(sidenote: implicit regularization properties of optimization method)

Newton's method for logistic regression & IRLS

\[\nabla l(\mathbf{w}) = \sum_{i=1}^{n} x_i \left[y_i - \sigma(\mathbf{w}^T x_i) \right] \]
\[H(l(\mathbf{w})) = \sum_{i=1}^{n} x_i x_i^T \sigma(\mathbf{w}^T x_i) \sigma(\mathbf{w}^T x_i) \]
\[\nabla^T H \nabla = -\sum_{i=1}^{n} \left(\frac{(\nabla^2 \sigma(-\mathbf{w}^T x_i)) (\nabla^2 \sigma(-\mathbf{w}^T x_i))}{(\nabla \sigma(\mathbf{w}^T x_i))^2} \right) \geq 0 \]

ie. \(\nabla^T H \nabla \geq 0 \)

\[\Rightarrow \ H \geq 0 \]

ie. concave function

notation:
\[\mathbf{X} = \left(\begin{array}{c} -z_i^T \\ \vdots \\ -z_1^T \end{array} \right) \]

let \(\mu_i \triangleq \sigma(\mathbf{w}^T x_i) \in [0,1] \)
\[\nu_i \triangleq \sigma(\omega_i) \in [0,1] \]
\[\nabla \ell(w) = \sum_{i=1}^{n} x_i [y_i - \nu_i] = X^T (y - \mu) \]
Hessian: \[= -\sum_{i=1}^{n} x_i x_i^T \nu_i (1 - \nu_i) = -X^T D \nu X \]
where \(D_{ii} = \nu_i (1 - \nu_i) \)

[Note: \(D \) depends]

Newton's update (here Newton's updates are maximizing log-likelihood, \(\frac{d}{d\nu} \ell \) concave)

Newton's update:
\[w_{k+1} = w_k - (X^T D_x X)^{-1} X^T (y - \mu w) \]
\[= (X^T D_x X)^{-1} \left[(X^T D_x X) w_k + X^T (y - \mu w) \right] \]
\[w_{k+1} = (X^T D_x X)^{-1} \left(X^T D_x z_k \right) \]
where \(z_k \triangleq X w_k + D^{-1}_x (y - \mu w) \)

This is a solution to "weighted least squares problem"
\[\min_{w} \sum_{i=1}^{n} D_{ii}^2 (z_i - x_i w)^2 \]

Compare with Gaussian noise model for L.S.
\[\sum_{i=1}^{n} \frac{(y_i - x_i w)^2}{\sigma_i^2} \]
Neutron's method for logistic regression

= Iterative Reweighted Least Square (IRLS)

2 comments for assignment:

\(\| \nabla f(w) \|_2 \leq E \)

2) to compute \(A^T \) \(A \) \(\backslash \) \(V \)

Big data logistic regression:

- cannot do \(O(d^3) \) or \(O(d^2) \) operations \(\Rightarrow \) First order methods
- if \(n \) is huge, you cannot do batch method

\(\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) \quad O(nd) \) time

instead you "incremental gradient methods"

Eq. Stochastic gradient descent (SGD):

\(w_{t+1} = w_t - \alpha_t \nabla f_i(w_t) \quad O(d) \) time

where \(\alpha_t \) is picked randomly

SGD \(\Rightarrow \) cheap updates, but slower convergence per iteration
SAG: stochastic averaged gradient

C.D. \[w_{t+1} = w_t - \alpha_t \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_t) \]

SAG: \[w_{t+1} = w_t - \alpha_t \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_t) \text{ memory} \]

where \(\nabla f_i(w_t) \) at each \(t \), update only one \(V_{i,t} \)

SA(2014): \[w_{t+1} = w_t - \alpha_t \left(\nabla f_i_t(w_t) + \frac{1}{n} \sum_{i=1}^{n} \nabla f_i_t(w_t) \right) \text{ variance reducing correction} \]

(default method for logistic regression in Scikit-learn)