today: kernel trick
unsupervised learning
K-means
GMM & EM

Kernel trick

Main idea: trick to do non-linear methods using linear techniques

Motivation/Background: recall for least-square regression, gradient:
\[\sum_i (y_i - wx_i) = X^T \hat{\theta}_{ls} \]
for logistic regression,
\[\sum_i (y_i - \sigma(wx_i)) = X^T \hat{\theta}_{ls} \]

\[\Rightarrow \text{ during gradient descent, } W_t = \sum_{i=1}^{n} \alpha_i \hat{x}_i \]

Also for ridge regression, solution:
\[\hat{\theta} = (X^T X + \lambda I_d)^{-1} X^T y \]
\[= X^T (X^T X + \lambda I_n)^{-1} y \]
\[= \hat{\theta}_{ls} \]
\[(X^T X)_{ij} = \langle x_i, x_j \rangle = k(x_i, x_j) \]
"Gram matrix" / "Kernel matrix"

\[\Rightarrow \"\text{Kernalized least squares}\"

Suppose have mapping
\[X \rightarrow \Phi(x) \]
"feature space embedding"

\[\hat{\theta} = \sum_{i=1}^{n} \alpha_i \langle \Phi(x_i), \Phi(x) \rangle \]
"Kernel trick": you can implicitly work in high dimensional space only using $K(\cdot, \cdot)$ evaluation.

For example: from 2D to 3D

$$\psi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$<\psi(z_1), \psi(z_2)> = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$= (x_1x_1')^2 + 2(x_1x_1')(x_2x_2') + (x_2x_2')^2$$

$$= (x_1x_1' + x_2x_2')^2$$

$$= <z_1, z_2>^2 = K(z_1, z_2)$$

A kernel could even be co-dim for some kernels e.g. Gaussian Kernel / RBF Kernel

$$K(x, z) = \exp(-\frac{||x-z||^2}{2\sigma^2})$$

i.e. $\psi: X \rightarrow \mathcal{H}$

$s.t. <\psi(x), \psi(x')>_{\mathcal{H}} = K(x, x') = \psi$

*Note: Neural networks can be seen as "learning" $\psi(x)$ i.e. learning the kernel ψ.

Unsupervised Learning

Here X without labels Y...
Consider the Gaussian mixture model (GMM):

\[Y \sim \text{Mult}(\pi), \quad \pi \in \Delta_K \]
\[X | Y = y \sim N(\mu_y, \Sigma) \]
\[p(x) = \sum_{y \in \Delta_K} \frac{\pi(y)}{\pi(y)} N(x | \mu_y, \Sigma) \]

GMM model, more generally could use different covariance per-class \(\Sigma \)

Graphical model for this "latent variable model" (use \(Z \) instead of \(Y \))

(\(Z \) = repeated)

Two views on \(p(x) \)

Mixture distribution

Latent variable model

(\(\pi \) = probability of class)

(\(\Sigma \) = covariance for class)

(later in class, we will add time structure & HMM)
K-means → to do clustering i.e. group data
(can be seen as a limit of GMM)
we want to get cluster assignment for every data point \(x_i \)
intuition: represent \(z_{ij} = 1 \) to mean \(x_i \) in cluster \(j \)
\(j = 1, \ldots, K \) # of clusters (specified in advance for K-means)
applications:
- vector-quantization
- in computer vision: use k-means to get "bag of visual words" representation of image patches
K-mean algorithm → can be seen as block-coordinate minimization of objective function
\[
J(z, \mu) = \sum_{i=1}^{N} \min_{j \in \{1, \ldots, K\}} \| x_i - \mu_j \|_2^2
\]
cluster assignment \(z_1, \ldots, z_N \) in \(\{0, 1\}^K \) \(\mu_1, \ldots, \mu_K \) cluster means
alg: 1) initialize \(\mu_0 \)
2) iterate to convergence:
"E" step: \(z^{(t+1)} = \arg \min_{z \in \{0, 1\}^K} J(z, \mu^{(t)}) \)
\(z_{ij}^{(t+1)} = 1 \) for \(j = \arg \min_{j \in \{1, \ldots, K\}} \| x_i - \mu_j^{(t)} \|_2^2 \)
demo: http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

1) converge in finite # of iteration to local min
2) NP hard in general to find best \(\mu \)

K-mean++ is a clever initialization scheme which guarantees
objective is within \(\log K \) of global optimum (w.h.p.)

\[J(\mu, z, K) = \sum_{i=1}^{n} \sum_{j=1}^{K} z_{ij} ||x_i - \mu_j||^2 + \lambda K \]

we'll see later in class "non-parametric models"

where "\(K \)" is basically infinite

e.g. Dirichlet process

and can get \(p(K \mid data) \)

(see also model selection lecture later)

3) K-mean is very sensitive on distance measure & it assumes spherical cluster

To avoid:

Choice of \(K \):

1) heuristic is:
 \[J(\mu, z, K) = \sum_{i=1}^{n} \sum_{j=1}^{K} z_{ij} ||x_i - \mu_j||^2 + \lambda K \]
EM - maximum likelihood in latent variable model

\[\log \text{likelihood} = \log p(x, z) = \log \left(\sum_z q(z) p(x, z) \right) \]

- Gave multi-modal & difficult optimization problem

Options for ML in latent variable model:

1) Do gradient ascent on non-concave objective

2) EM algorithm: coordinate ascent on auxiliary function that lower bounds \(\log p(x, z) \)

Nice interpretation in terms of filling missing data

i.e. \(E \) step \(\rightarrow \) fill \(z \) with \(q(z) \) values

M step \(\rightarrow \) maximize \(\psi(z \| B) \) for fully observed model with respect

\[\log \sum_z p(z, x) = \log \sum_z q(z) p(z, x) \]

Jensen's inequality

\[\mathbb{E}[\mathcal{S}(x)] \leq \mathcal{S}(\mathbb{E}[x]) \]

\(\rightarrow \) concave set,
where \(q(z) \) is some distribution on \(z \) when \(f \) is constant

\[
\log \left(\mathbb{E}_q \left[\log \frac{p(x,z)}{q(z)} \right] \right) \geq \mathbb{E}_q \left[\log \frac{p(x,z)}{q(z)} \right] = \sum_z q(z) \log \left(\frac{p(x,z; \theta)}{q(z)} \right) - \sum_z q(z) \log q(z) \\
\geq \mathbb{E}_q \left[\log \frac{p(x,z; \theta)}{q(z)} \right] + H(q) \\
\geq \log p(x; \theta)
\]

we have \(\log p(x; \theta) \geq \mathbb{E}_q \left[\log \frac{p(x,z; \theta)}{q(z)} \right] + H(q) \)

we get equality when \(f \) is linear i.e. \(f(z) = \text{constant} = p(z) \)

dd. \(q(z) \) or \(p(x,z) \)

\[
\Rightarrow q^{*}(z) = p(x,z) = p(x,z) = p(z|x) \\
\geq p(z|x) = p(z)
\]

this means that \(\arg \max_{q \text{distribution}} \mathbb{E}_q q(z) = p(z|x; \theta) \)

EM algorithm: E step: \(q_{t+1} = \arg \max_{q} \mathcal{L}(q; x, \theta_t) \Rightarrow q_{t+1}(z) = p(z|x, \theta_t) \)

M step: \(\theta_{t+1} = \arg \max_{\theta} \mathcal{L}(q_{t+1}; x, \theta) \)

block coordinate ascent on \(\mathcal{L}(q; x, \theta) \leq \log p(x; \theta) \)

we have \(\lim_{t \to \infty} \mathcal{L}(q_t; x, \theta) = \log p(x; \theta) \)
We have \[\log p(x; \Theta) = \ell(\Theta_{\text{ML}}) \]
\[\ell(\Theta_{\text{ML}}) = \ell(x) \]

Properties:

1. \[\log p(x; \Theta) > \log p(x; \tilde{\Theta}) \implies \text{EM is increasing the likelihood} \]
2. \(\Theta_{\text{ML}} \) in EM converges to a stationary point of \(\log p(x; \Theta) \)

i.e. \[\nabla \log p(x; \Theta_{\text{ML}}) = 0 \]

Like k-means, initialization is crucial.

- Usually need random restarts.

For GMM, could use k-means ++ to initialize the means of Gaussian.

Teaching Page 8