IFT6269-A2019	Hwk 3	Name:
Prof: Simon Lacoste-Julien	Due date: Nov 5, 2019	Student id:

1. DGM (5 points)

Consider the directed graphical model G on the right. Write down the implied factorization for any joint distribution $p \in \mathcal{L}(G)$. Is it true that $X \perp \!\!\perp Y \mid T$ for any $p \in \mathcal{L}(G)$? Prove or disprove.

2. d-separation in DGM (5 points)

Indicate (yes or no) which conditional independence statements are true?

X

Y

3. Positive interactions in-V-structure (10 points)

Let X, Y, Z be binary random variables with a joint distribution parametrized according to the graph: $X \to Z \leftarrow Y$. We define the following:

$$a := P(X = 1), \quad b := P(X = 1 \mid Z = 1), \quad c := P(X = 1 \mid Z = 1, Y = 1)$$

- (a) For all the following cases, provide examples of joint probability tables (and calculate the quantities a, b, c), so that each of the following conditions are (individually) true:
 - (i) a > c
 - (ii) a < c < b
 - (iii) b < a < c.
- (b) Think of X and Y as causes and Z as a common effect, for the previous three cases, briefly state (in a sentence or two) why the claims are true for your examples.

4. Flipping a covered edge in a DGM (10 points)

Let G = (V, E) be a DAG. We say that a directed edge $(i, j) \in E$ is a covered edge if and only if $\pi_j = \pi_i \cup \{i\}$. Let G' = (V, E'), with $E' = (E \setminus \{(i, j)\}) \cup \{(j, i)\}$. Prove that $\mathcal{L}(G) = \mathcal{L}(G')$.

5. Equivalence of directed tree DGM with undirected tree UGM (10 points)

Let G be a directed tree and G' its corresponding undirected tree (where the orientation of edges is ignored). Recall that by the definition of a directed tree, G does not contain any v-structure. Prove that $\mathcal{L}(G) = \mathcal{L}(G')$.

6. Hammersley-Clifford counter-example (10 points)

In class, we mentioned that the strict positivity of the joint distribution was crucial in the Hammersley-Clifford theorem. Here is a counter-example (4.4 in Koller & Friedman) that shows the problems when we have zero probabilities.

Consider a joint distribution p over four binary random variables: X_1 , X_2 , X_3 and X_4 which gives probability $\frac{1}{8}$ to each of the following eight configurations, and zero to all others:

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1,1,1)

Let G be the usual four nodes undirected graph $X_1 - X_2 - X_3 - X_4 - X_1$. One can show that p satisfies the global Markov property with respect to this graph G because of trivial deterministic relationships. For example, if we condition on $X_2 = 0$ and $X_4 = 0$, then the only value of X_3 with non-zero probability is $X_3 = 0$, and thus $X_3|(X_2 = 0, X_4 = 0)$ being a deterministic random variable, it is trivially conditionally independent to X_1 . By (painfully) going through all other possibilities, we get similar situations: $X_2 = 0$ and $X_4 = 1$ forces $X_1 = 0$, etc.

Prove that the distribution p cannot factorize according to G, and thus $p \notin \mathcal{L}(G)$. *Hint:* argue by contradiction.

7. EM and Gaussian mixtures (4 points)

Derive the form of the M-step updates for the parameters $\{\pi_k, \mu_k, \sigma_k\}_{k=1}^K$ of a Gaussian mixture model in which the covariance matrices are proportional to the identity:

$$p(x) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(x \,|\, \boldsymbol{\mu}_k, \sigma_k \mathbf{I})$$

8. Bonus: bizarre conditional independence properties (10 bonus points)

Let (X, Y, Z) be a random vector with a finite sample space. Consider the following statement:

"If
$$X \perp \!\!\!\perp Y \mid Z$$
 and $X \perp \!\!\!\perp Y$ then $(X \perp \!\!\!\perp Z \text{ or } Y \perp \!\!\!\perp Z)$."

- (a) Is this true if one assumes that Z is a binary variable? Prove or disprove.
- (b) Is the statement true in general? Prove or disprove.

Note: Bonus points do not carry over across homeworks.

9. Implementation: EM and Gaussian mixtures (26 points)

Follow the instructions in the following Colab notebook for this part: https://colab.research.google.com/drive/1rwTxv-ePQkpHCpY5-Tg5SV2WGd6Im5ee.