1. **DGM (5 points)**
Consider the directed graphical model G on the right. Write down the implied factorization for any joint distribution $p \in \mathcal{L}(G)$. Is it true that $X \perp \perp Y \mid T$ for any $p \in \mathcal{L}(G)$? Prove or disprove.

![Diagram of a directed graphical model](image)

2. **d-separation in DGM (5 points)**
Indicate (yes or no) which conditional independence statements are true?

(a) $C \perp B$?
(b) $C \perp B \mid A$?
(c) $C \perp B \mid A, J$?
(d) $C \perp B \mid A, J, D$?
(e) $C \perp G$?
(f) $C \perp G \mid B$?
(g) $C \perp G \mid B, D$?
(h) $C \perp G \mid B, D, H$?
(i) $C \perp G \mid B, D, H, E$?
(j) $B \perp I \mid J$?

3. **Positive interactions in-V-structure (10 points)**
Let X, Y, Z be binary random variables with a joint distribution parametrized according to the graph: $X \rightarrow Z \leftarrow Y$. We define the following:

$$a := P(X = 1), \quad b := P(X = 1 \mid Z = 1), \quad c := P(X = 1 \mid Z = 1, Y = 1)$$

(a) For all the following cases, provide examples of joint probability tables (and calculate the quantities a, b, c), so that each of the following conditions are (individually) true:

(i) $a > c$
(ii) $a < c < b$
(iii) $b < a < c$.

(b) Think of X and Y as causes and Z as a common effect, for the previous three cases, briefly state (in a sentence or two) why the claims are true for your examples.

4. **Flipping a covered edge in a DGM (10 points)**
Let $G = (V, E)$ be a DAG. We say that a directed edge $(i, j) \in E$ is a covered edge if and only if $\pi_j = \pi_i \cup \{i\}$. Let $G' = (V, E')$, with $E' = (E\backslash\{(i, j)\}) \cup \{(j, i)\}$. Prove that $\mathcal{L}(G) = \mathcal{L}(G')$.

5. **Equivalence of directed tree DGM with undirected tree UGM (10 points)**
Let G be a directed tree and G' its corresponding undirected tree (where the orientation of edges is ignored). Recall that by the definition of a directed tree, G does not contain any v-structure. Prove that $\mathcal{L}(G) = \mathcal{L}(G')$.
6. **Hammersley-Clifford counter-example (10 points)**

In class, we mentioned that the strict positivity of the joint distribution was crucial in the Hammersley-Clifford theorem. Here is a counter-example (4.4 in Koller & Friedman) that shows the problems when we have zero probabilities.

Consider a joint distribution \(p \) over four binary random variables: \(X_1, X_2, X_3 \) and \(X_4 \) which gives probability \(\frac{1}{8} \) to each of the following eight configurations, and zero to all others:

\[
(0, 0, 0, 0) \quad (1, 0, 0, 0) \quad (1, 1, 0, 0) \quad (1, 1, 1, 0) \quad (0, 0, 0, 1) \quad (0, 0, 1, 1) \quad (0, 1, 1, 1) \quad (1, 1, 1, 1)
\]

Let \(G \) be the usual four nodes undirected graph \(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_1 \). One can show that \(p \) satisfies the global Markov property with respect to this graph \(G \) because of trivial deterministic relationships. For example, if we condition on \(X_2 = 0 \) and \(X_4 = 0 \), then the only value of \(X_3 \) with non-zero probability is \(X_3 = 0 \), and thus \(X_3 \mid (X_2 = 0, X_4 = 0) \) being a deterministic random variable, it is trivially conditionally independent to \(X_1 \). By (painfully) going through all other possibilities, we get similar situations: \(X_2 = 0 \) and \(X_4 = 1 \) forces \(X_1 = 0 \), etc.

Prove that the distribution \(p \) **cannot** factorize according to \(G \), and thus \(p \notin \mathcal{L}(G) \). **Hint:** argue by contradiction.

7. **EM and Gaussian mixtures (4 points)**

Derive the form of the M-step updates for the parameters \(\{\pi_k, \mu_k, \sigma_k\}_{k=1}^K \) of a Gaussian mixture model in which the covariance matrices are proportional to the identity:

\[
p(x) = \sum_{k=1}^K \pi_k N(x \mid \mu_k, \sigma_k I)
\]

8. **Bonus: bizarre conditional independence properties (10 bonus points)**

Let \((X, Y, Z)\) be a random vector with a finite sample space. Consider the following statement:

"If \(X \perp \!\!\!\!\perp Y \mid Z \) and \(X \perp \!\!\!\!\perp Y \) then \((X \perp \!\!\!\!\perp Z \text{ or } Y \perp \!\!\!\!\perp Z)\)."

(a) Is this true if one assumes that \(Z \) is a binary variable? Prove or disprove.

(b) Is the statement true in general? Prove or disprove.

Note: Bonus points do not carry over across homeworks.

9. **Implementation: EM and Gaussian mixtures (26 points)**

Follow the instructions in the following Colab notebook for this part: https://colab.research.google.com/drive/1rwTxv-ePQkpHCpY5-Tg5SV2WGd6Im5ee.