1. Entropy and Mutual Information (20 points)

(a) Let X be a discrete random variable on a space \mathcal{X} with $|\mathcal{X}| = k < \infty$.

- i. Prove that the entropy $H(X) \geq 0$, with equality only when X is a constant.
- ii. Denote by p the distribution of X and q the uniform distribution on \mathcal{X} . What is the relation between the Kullback-Leibler divergence D(p||q) and the entropy H(X) of the distribution p?
- iii. Deduce a tight upper bound which depends on k for the entropy of any distribution p over \mathcal{X} .
- (b) We consider a pair of discrete random variables (X_1, X_2) defined over the finite set $\mathcal{X}_1 \times \mathcal{X}_2$. Let $p_{1,2}$, p_1 and p_2 denote respectively the joint distribution, the marginal distribution of X_1 and the marginal distribution of X_2 . We define the mutual information between X_1 and X_2 as:

$$I(X_1, X_2) := \sum_{(x_1, x_2) \in \mathcal{X}_1 \times \mathcal{X}_2} p_{1,2}(x_1, x_2) \log \frac{p_{1,2}(x_1, x_2)}{p_1(x_1)p_2(x_2)}.$$

- i. Manipulate the expression above to show that $I(X_1, X_2) \geq 0$.
- ii. Let H(Z) be the entropy of the random variable $Z = (X_1, X_2)$. Show that $I(X_1, X_2)$ can be expressed as a function of $H(X_1), H(X_2)$ and H(Z).
- iii. What is the joint distribution $p_{1,2}$ over $\mathcal{X}_1 \times \mathcal{X}_2$ of maximal entropy with fixed marginals p_1 and p_2 ?

2. Hidden Markov Models (80 points)

Follow the instructions in this Colab notebook: https://colab.research.google.com/drive/1cfWlGh9-o0L-2RThujXzW_VgYZn9V5M6