IFT6269-A2019 Hwk 5
Prof: Simon Lacoste-Julien Due date: Dec 17, 2019

Name: Student id:

1. Cautionary tale about importance sampling (10 points)

Suppose that we wish to estimate the normalizing constant Z_p for an un-normalized Gaussian $\tilde{p}(x) = \exp(-\frac{1}{2\sigma_p^2}x^2)$; i.e. we have $p(\cdot) \sim \mathcal{N}(0, \sigma_p^2)$ with $p(x) = \tilde{p}(x)/Z_p$. Given N i.i.d. samples $x^{(1)}, \ldots, x^{(N)}$ from a standard normal $q(\cdot) \sim \mathcal{N}(0, 1)$, consider the importance sampling estimate:

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \frac{\tilde{p}(x^{(i)})}{q(x^{(i)})}.$$

- (a) Show that \hat{Z} is an unbiased estimator of Z_n .
- (b) Letting $f(x) := \tilde{p}(x)/q(x)$, show that $\operatorname{var}(\hat{Z}) = \frac{1}{N}\operatorname{var}(f(X))$ whenever $\operatorname{var}(f(X))$ is finite.
- (c) For what values of σ_p^2 is this variance actually finite?

2. Gibbs sampling and mean field variational inference (10 points)

Consider the Ising model with binary variables $X_s \in \{0,1\}$ and a factorization of the form:

$$p(x;\eta) = \frac{1}{Z_p} \exp\left(\sum_{s \in V} \eta_s x_s + \sum_{\{s,t\} \in E} \eta_{st} x_s x_t\right).$$

- (a) Derive the Gibbs sampling updates for this model.
- (b) Derive the naive mean field updates (based on a fully factorized approximation), where we use the notation $q(X_s = 1) = \tau_s$. More specifically, we do cyclic coordinate descent on KL(q||p), sequentially updating the parameter $\tau_s \in [0,1]$. Derive the expression for $KL(q||p) \log(Z_p)$.

3. Implementation of Gibbs sampling and mean field variational inference (20 points)

Follow the instructions in this Colab notebook: https://colab.research.google.com/drive/1K2sTulUsq1nnqRkDpHwXBuFndLic3yHj