today:

- undirected graph model
- inference

\[\text{undirected GM (UGM)} \] (a.k.a. Markov random field or Markov network)

Let \(G = (V, E) \) be an undirected graph

Let \(C \) be the set of cliques of \(G \) \(\text{clique} = \text{fully connected set of nodes} \)

\(\text{i.e. } C \subseteq V \quad \forall i, j \in C \quad \forall (i, j) \in E \)

\[\text{UGM associated with } G \]

\[Z(G) = \sum_{\phi} p : p(x_v) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c) \]

for some "potentials" \(\psi_c \), i.e., \(\psi_c(x_c) \geq 0 \ \forall x_c \)

and \(Z \triangleq \sum_{x_v} \prod_{c \in C} \psi_c(x_c) \) "partition function"

\[Z = \sum_{x_1} \ldots \sum_{x_n} \]

Note:
- Unlike in DGM (where we could think of \(C \) to be \((i, j) \), \(\psi_c(x_c) = p(x_i | x_j) \))

\(\psi_c(x_c) \) is not directly related to \(p(x_c) \)

- Can rescale any potential without changing \(p \) i.e., \(\psi_c^{\text{new}}(x_c) = \psi_c(x_c) \cdot c^{\frac{1}{2}} \)

- It is sufficient to consider \(C_{\text{max}} \), the set of maximal cliques

e.g. \(C' \subseteq C \)

Redefine \(\psi_c^{\text{new}}(x_c) = \psi_c(x_c) \cdot \psi_c^{\text{old}}(x_c) \)

(if \(C' \) belongs to more than one \(C \), just choose one)

\(\psi_c^{\text{old}}(x_c) \)

\[\psi_c(x_c) \]

\[c^{\frac{1}{2}} \]

\[\sum \]

\[\text{we'll see later it is convenient to} \]

\[\ldots \ldots \]
properties:
- As before, \(E \leq E' \Rightarrow \mathcal{S}(E) \leq \mathcal{S}(E') \)
- \(E = \emptyset \Rightarrow \mathcal{S}(E) = \text{fully connected dist.} \)
- \(E = \text{all pairs} \quad \mathcal{S}(E) = \text{all distributions} \) (i.e., \(G \) is just one big clique)
- If \(\chi_i(x_i) > 0 \) \(\forall x_i \)
 - can write \(p(z) = \exp \left(\sum_{E \in \mathcal{E}} \log \chi_i(x_i) - \log \beta \right) \)
 - physical link: negative energy function

e.g. Ising model in physics
- \(x_i \in \{0,1\} \)
 - node potential \(\rightarrow \chi_i \)
 - edge potential \(\rightarrow E_{ij} \)
 - \(E_i = \chi_i(x_i=1) \)
 - \(E_{ij} = \chi_{ij}(x_i=1, x_j=1) \)

Other example: social network modeling

Conditional independence for UGM

Definition: We say that \(p \) satisfies the global Markov property (with respect to an undirected graph \(G \)) if, for all \(S \subseteq V \) and \(A \subseteq V \setminus S \),

- If \(A, B \in \mathcal{S} \) and \(S \) separates \(A \) from \(B \) in \(G \)
 - then \(X_A \perp \perp X_B \mid X_S \)

\[A \overset{S}{\perp} B \]
Prop: \(p \in \mathcal{F}(G) \Rightarrow p \) satisfies the global Markov property for \(G \)

Proof:

WLOG, we assume \(A \cup B \cup S = V \). \(S \) is a separator of \(V \) by \(S \).

[Why? If not, let \(A = A \cup \{a \} \in \mathcal{A} \); \(a \) and \(A \) are not separated by \(S \).
\(B = V \setminus (A \cup \{a \}) \).

Then if we have \(X_A \perp\!\!\!\perp X_B \mid X_S \)

\(\Rightarrow X_A \perp\!\!\!\perp X_B \mid X_S \)

by decomposition property

[Exercise: Show that if \(b \in \hat{B} \)

\(\Rightarrow b \) is separated from \(A \) by \(S \).

\(V = A \cup S \cup B \)

Let \(C \in \mathcal{E} \).

Cannot have \(C \cap A \neq \emptyset \) and \(C \cap B \neq \emptyset \).

Thus \(p(z) = \prod_{z \in \mathcal{E}_{z}} \prod_{C \in \mathcal{E}_{z}} \prod_{C \cup \mathcal{A} \cup S} \prod_{C \cup \mathcal{B} \cup S} = f(z_{AUS})g(z_{BUS}) \)

\[p(x_A | x_S) = \frac{p(x_A, x_S)}{p(x_S)} \leq p(x_V = x_B) = f(z_{AUS})g(z_{BUS}) \]

\[\Rightarrow f(z_{AUS}) \leq g(z_{BUS}) \]

(consistent with respect to \(x_A \))
\[p(x_A | x_S) = \frac{f(x_A, x_S)}{f(x_A, x_S) | x_S} \]

Similarly, \[p(x_B | x_S) = \frac{g(x_B, x_S)}{f(x_B, x_S) | x_S} \]

\[
p(x_A | x_S) p(x_B | x_S) = \frac{f(x_A, x_S) g(x_B, x_S) \cdot p(x_S)}{f(x_A, x_S) g(x_B, x_S) \cdot p(x_S)} \quad \text{implies} \quad X_A \perp X_B | X_S
\]

Thm.: (Hammond's-Gaifman) If \(p(x_S) > 0 \ \forall x_S \)

then \(p \in \mathcal{G}(G) \iff p \) satisfies the global Markov prop. for \(G \)

Proof: See ch. 6 of Mike's book; use "Markov inversion formula" (as exclusion-inclusion principle in graph)

Properties of GGM:

- Closure with respect to marginalization:

 \[\text{Let } V' = V \setminus \{n\}, \quad E' = \{e \in E | e \text{ connects } V' \setminus \{n\} \text{ to } \{n\} \} \]

 \[\{ \text{marginal on } \sigma_{i,n-1} \text{ for } p \in \mathcal{G}(G) \}^2 = \mathcal{G}(G) \]

DGM vs UGM

- **Def.** Markov blanket for \(i \) (for graph \(G \)) is the smallest set of nodes \(N \) at \(x_i \perp x_i | x_i \) (in G)

 - For GGM: \(N = \mathcal{G}(G) \setminus \{i\} \)
 - For UGM: \(N = \mathcal{N}(\{i\}) \)
 - \(\mathcal{N}(\{i\}) = \{ \text{set of neighbors of } i \} \)
for UGM: \(M = \{ u \} \) - set of neighbors of \(\hat{u} \)

for DGM: \(M = \pi_{\hat{u}} \uplus \text{children}(i) \uplus \bigcup_{j \in \text{children}(i)} \pi_j \)

\(\text{recap} \)

<table>
<thead>
<tr>
<th>DGM</th>
<th>UGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(z) = \prod p(x_i</td>
<td>z_{\pi_i}))</td>
</tr>
<tr>
<td>d-separation</td>
<td>separation</td>
</tr>
<tr>
<td>not closed in general</td>
<td>closed</td>
</tr>
<tr>
<td>but is fine for loops</td>
<td>(cannot all neighbors of removed node)</td>
</tr>
<tr>
<td>cannot exactly capture some familial</td>
<td>V-structure</td>
</tr>
</tbody>
</table>

Moralization:

Let \(G \) be a DAG; when can we transform \(G \) to an equivalent UGM

Def: for \(G \) a DAG, we call \(\overline{G} \) the **moralized graph** of \(G \)

where \(\overline{G} \) is an undirected graph with same \(V \)

and \(E = \left\{ i \mid j : (i, j) \in E \right\} \) undirected version of \(G \)

\(U \ni k, \xi, s \ni k \neq 0 \iff \xi > s \) for some \(i \neq \) moralization

\((\text{connect all the parents of } \hat{u} \text{ with } i \text{ in big dope}) \)
For a DAG G with no V-structure, then $S(G) = S'(G)$.

But in general, can only say $S(G) \leq S'(G)$.

Note that \tilde{G} is the minimal undirected graph so $S(G) \leq S(\tilde{G})$.

General themes in this class:

A) representation \rightarrow DGM \rightarrow VGM
 parameterization \rightarrow exponential family

B) inference $p(Z | x)$ \rightarrow today's elimination alg.
 "query" (and more)
 \rightarrow today's elimination alg.
 "query" (and more)
 \rightarrow sum-product/ belief propagation
 (for trees)

C) statistical estimation/ learning \rightarrow MLE
 maximum entropy
 method of moments

Inference:

present alg. for VGM for simplicity and more generally

but note that sometimes more efficient...
make $DGM \rightarrow UGM$ via renormalization

i.e. $DGM : p(z) \propto \prod_i p(x_i | z_i) \propto \prod_i \psi(z_i)$

\[C = \frac{1}{Z} \sum_{z_i} \psi(z_i) \]

\[Z = \prod_i p(x_i | z_i) \]

\[\frac{1}{Z} \prod_i \psi(z_i) \]

inference: want to compute

a) marginal: $p(z_F)$ for some FSV

b) conditional: $p(z_E | z_F)$

"query" "evidence"

c) for UGM: partition function $Z = \prod \psi(z_i)$

Why?

* missing data

 $p(z_{\text{unde}} | z_{\text{obs}})$

 * prediction e.g. $p(z_{\text{futur}} | z_{\text{past}})$

 "latent cause" e.g. $p(z_{\text{cause}} | z_{\text{obs}})$

* also related to inference

 \[\text{argmax}_{z_F} p(z_F | z_E) \]

 Found in big hae (e.g. speech recognition)
* Inference is also needed during estimation (parametric setting MLE)

\[\text{[e.g. during E-step \(p(\mathbf{z} | \mathbf{x}) \)]} \]