Lecture 14 - scribbles

today: inference - graph eliminate
- sum-product

graph elimination alg. (for inference)

- consider p ∈ \mathcal{G}, \(p(x) = \prod_{c \in C} \psi_c(x_c) \)
 undirected

say want to compute \(p(x_F) \) for \(F \in V \) "query nodes"

main trick: use distributivity of \(\oplus \) over \(\odot \) → \(\odot(a \oplus b) = \odot a + \odot b \)

\[\frac{\sum_{\alpha_1, \alpha_2} f(x_1) g(x_2)}{\sum_{\alpha_1} f(x_1)} = \left(\sum_{\alpha_1} \frac{g(x_2)}{g(x_2)} \right) \left(\sum_{\alpha_2} \frac{f(x_1)}{f(x_1)} \right) \]

- convince yourself

more generally: \(\frac{\sum_{\alpha_1, \alpha_2} f(x_1) g(x_2)}{\sum_{\alpha_1} f(x_1)} = \sum_{i=1}^n \frac{g(x_2)}{g(x_2)} \)

[factor out \(\sum_{\alpha_1} f(x_1) \)]

\[p(x_4) = \frac{\sum_{\alpha_1, \alpha_2} \psi_1(x_1, x_2) \psi_2(x_1, x_3) \psi_3(x_1, x_4) \psi_4(x_2, x_3) \psi_5(x_3, x_4)}{\sum_{\alpha_1} \psi_1(x_1, x_2) \psi_2(x_1, x_3) \psi_3(x_1, x_4) \psi_4(x_2, x_3) \psi_5(x_3, x_4)} \]

\[\leq \frac{\psi_4(x_3, x_4) \psi_1(x_1, x_2)}{m_4(x_2, x_3)} \]

\[\leq \frac{\psi_4(x_3, x_4)}{m_4(x_2, x_3)} \]

\[= \frac{1}{2} m_3(x_4) \]

- last message is proportional to marginal \(p(x_4) \)

\[\leq m_3(x_4) = \frac{1}{2} \]

general alg: Graph Eliminate

init: \[a) \] choose an elimination ordering \(x_F \) are the last nodes

\[b) \] put all \(\psi_c(x_c) \) on "active list"

"update": \[c) \] repeat in order of variables to eliminate
C) repeat in order of variables to eliminate
(say \(x_i \) is variable to eliminate)

1) remove all factors from active list with \(x_i \) in it & take product
 \[\prod_{\alpha \in S_i} \varphi_{\alpha} \]

2) sum \(x_i \) to get a new factor \(m_i (x_{S_i}) \)
 \[m_i (x_{S_i}) = \sum_{x_i} \prod_{\alpha \in S_i} \varphi_{\alpha} \]
 new clique to
 \[S_i = \left(\bigcup_{\alpha \in S_i} \right) \text{set 1} \]

3) put back \(m_i (x_{S_i}) \) in active list

'normalize' d) last factor left has only \(x_F \) \(\Rightarrow \) proportional to \(p(x_F) \)

memory needed? \(\approx 2^{|S_i|} \cdot \text{(size factors)} \)

computational cost \(\approx 2^{|S_i|+1} \cdot \text{n} \)

Later, related 'treewidth' of a graph

δ "augmented graph" \(\rightarrow \) graph obtained by running graph eliminate + keeping track of all edges added

"augmented graph" after graph Eliminate is always a **triangulated graph**

Def.: graph with no cycle of size 4 or more that cannot be broken by a "chord"
Tree width of a graph \(\leq \min \text{ size of largest clique in } \text{ overall elimination ordering} \)

\[\text{tree width} \text{ (tree)} = 1 \]

Both memory and running time of graph elimination is dominated by \(2^{\text{tree width}} \).

Best ordering gives \(2^{\text{tree width} + 1} \).

Some ordering is good:

- Not all orderings are good.

Bad news:

1. NP hard to compute tree width (or find best ordering).
2. NP hard to do (exact) inference in general CSM.

\(\Rightarrow \) Need approximate methods.

Example: Tree width of a grid

\[\sim \sqrt{1/4} \]

\(\text{size of grid} \sim \text{tree width} \)

Good news:

* Inference is linear time for trees (tree width = 1) (**sum-product algo**).
* Efficient for "small tree width graph" (HMM, Markov chain).

Use **junction tree algo**
Inference on trees

graph Eliminate on a tree

good order: eliminate leaves first

sum-product alg. (for trees)

get all messages cheaply by storing (caching) & re-using messages (dynamic programming)

root

called first

distribute phase

*goal: \(\exists i, j \in E \), compute \(m_{ij}(x_j) \)

rule: I can only send message to neighbor J when it has received all messages from other neighbors

\[
p(x_i) = \prod_{E \ni (x_i, x_j)} \frac{p(x_i, x_j)}{p(x_i, x_j)} \]

\[
m_{ij}(x_j) = \prod_{E \ni (x_i, x_j)} \frac{p(x_i, x_j)}{p(x_i, x_j)} \]

\[
m_{j \rightarrow i}(x_i) = \prod_{E \ni (x_i, x_j)} \frac{p(x_i, x_j)}{p(x_i, x_j)} \]

at end

\[
p(x_i) = \prod_{\text{neighbors}} m_{j \rightarrow i}(x_i) \frac{p(x_i|x_j)}{p(x_i|x_j)}
\]
At end (node marginal)

\[
P(z_i) \propto \sum_{x_i} \prod_{j \in \mathcal{N}(i)} M_j \cdot p_i(z_i) \cdot \psi_i(x_i)
\]

Normalisation \(Z = \sum_x \prod_i x_i \)

\[
p(z_i, z_j) = \frac{\prod_{i \in \mathcal{E}} \prod_{j \in \mathcal{N}(i)} M_j(z_i, z_j) \cdot p_i(z_i) \cdot \psi_i(x_i)}{\prod_{j \in \mathcal{E}} \prod_{k \in \mathcal{N}(j)} K_{j}(z_j, z_k) \cdot \psi_j(x_j)}
\]

Sum-product schedule:

a) above, distribute/collect schedule

b) (floating) parallel schedule:

1) initialise all \(M_{i \rightarrow j}(z_j) \) messages to uniform dist. \(\psi_i(x_i) \) \(\forall i, j \in \mathcal{E} \) \(\forall (i, j) \in \mathcal{E} \)

2) at every step (in parallel) compute \(M_{i \rightarrow j}(z_j) \)

as if the neighbor messages were already correctly computed

- can prove that after "length of the tree" number of steps, all messages are correctly computed for a tree (and can fixate pt.)

Loopy Belief Propagation

[Loopy BP]: approximate inference for graph with cycles.

\[
M_{i \rightarrow j}(z_j) = \left(\frac{M_{i \rightarrow j}(z_j) \prod_{z_i} p_{i}(z_i) \prod_{j \in \mathcal{N}(i)} \phi_{i}(x_i)}{\prod_{i \in \mathcal{E}} \prod_{j \in \mathcal{N}(j)} K_{j}(z_j, z_k) \cdot \psi_j(x_j)} \right)
\]
\(\alpha \in [0, 1] \) \text{ "damping"}

\(\times \) this gives exact answers on trees (fixed pt. yields correct marginals)

\(\times \) on (not loop) graphs \(\rightarrow \) approximate solution

\[
p(x_i | x_E) \propto p(x_i, x_E)
\]

Getting conditions:

- Initially we have conditioning on
- keep this fixed during marginalization

(formal trick): redefine \(\hat{\gamma}_j(x_j) \triangleq \gamma_j | x_j \), \(S(x_j, x_E) \)

\[
\text{Kronecker delta: } S(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}
\]

Computing \(M_j \rightarrow (x_i) \)

\[
\leq \frac{\hat{\gamma}_j(x_j)}{S}
\]

\[
= \frac{\gamma_j | x_j \text{ shield } (x_j, x_E)}{S}
\]

At the end, result of sum-product will give

\[
p(x_i, x_E) = \prod_{j \in V}(M_j \rightarrow (x_j))
\]

renormalize over \(x_i \)

\[
p(x_i | x_E)
\]