Lecture 4 - scribbles
Friday, September 13, 2019 14:03

Today: Bayesian approach
MLE

Coin Flips - Bayesian Approach:

Biased Coin Flips

We believe \(X \sim \text{Bin}(n, \theta) \)

unknown \(\Rightarrow \) model it as a R.V.

\[\theta = [0, 1] \]

Suppose we observe \(X = x \) (result of \(n \) flips)

then we can "update" our belief about \(\theta \) using Bayes rule

\[
p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}
\]

\(p(x) \) = normalization "marginal likelihood"

\[p(\theta|x) \] is posterior belief

\[p(x|\theta) \] = observation model

\[p(\theta) \] = prior belief

\[p(\theta) \] is a "mixture" dist.

Note: \(p(\theta|x) \) is a pmf

\(p(x|\theta) \) is a pdf
\[\text{Note: } p(x|\theta) \xrightarrow{\theta \to 0} p(x) \quad \text{is a pdf} \quad p(x) \quad \text{is a "mixed" dist.} \]

Example:

Suppose \(p(\theta) \) is uniform on \([0,1]\) "no specific preference"

\[p(G|\theta) \propto \theta^{(1-\theta)^{n-2}} \chi_{[0,1]}(\theta) \]

"proportional to" \(p(x|\theta) \) up to \(p(\theta) \) scaling

\[\left(\frac{n}{x} \right) \]

Scaling : \[\int_{0}^{1} \theta^{(1-\theta)^{n-2}} d\theta = B(x+1, n-x+1) \]

Normalization constant \(\infty \) so that \[\int_{0}^{1} p(G|\theta) \, d\theta = 1 \]

\(B(a,b) \triangleq \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \)

\(\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{-u} \, du \)

Here, \(p(G|\theta) \) is called a "beta distribution"

\[B(\theta|\alpha, \beta) \triangleq \frac{\Gamma(n-1)(1-\theta)^{n-2}}{\Gamma(n)B(\alpha, \beta)} \chi_{[0,1]}(\theta) \]

Parameters
- uniform distribution: \(B(\theta | 1, 1) \)
- posterior here was \(B(\theta | x+1, n-x+1) \)

exercise to the reader: if we \(B(\theta_0 | \theta_0) \) as prior

posterior will be \(B(\theta | x+b_0, n-x+b_0) \)

posterior belief \(\mathbb{P}(\theta | x=x) \) contains all the info from data \(x \) that we need to answer new queries

eg. question: what is probability of head \((F=1) \) on the next flip

as a frequentist: \(\mathbb{P}(F=1 | \text{data}) = \hat{\theta} \)

as a Bayesian \(\mathbb{P}(F=1 | x=x) = \int \mathbb{P}(F=1 | \theta, x=x) d\theta \)

\(= \mathbb{E}[\theta | x=x] \) [by our model]
a meaningful "Bayesian" estimator of θ

$$\hat{\theta}_{\text{Bayes}}(x) = \mathbb{E}[\theta | x=x] \quad \text{(posterior mean)}$$

Relation: $\hat{\theta}$: observation $\rightarrow \Theta$

Our case example: $p(\Theta | x) = \text{Beta}(\Theta | x=x+1, \beta = n-x+1)$

mean of a beta r.v. $\frac{\alpha}{\alpha + \beta}$

Thus:

$$\hat{\theta}_{\text{Bayes}}(x) = \mathbb{E}[\theta | x] = \frac{x+1}{n+2}$$

Here, biased estimator $\mathbb{E}_x[\hat{\theta}(x)] \neq \Theta$

but asymptotically unbiased

$$\mathbb{E}[\hat{\theta}_{\text{Bayes}}(x)] = \frac{\mathbb{E}X + 1}{n+2} = \frac{n\bar{X} + 1}{n+2} \xrightarrow{n \to \infty} \Theta$$

Compare/contrast with $\hat{\theta}_{\text{MLE}}(x) = \frac{x}{n}$

Unbiased: $\mathbb{E}\hat{\theta}_{\text{MLE}}(x) = \frac{\mathbb{E}X}{n} = \frac{n\bar{X}}{n} = \Theta$

to summarize
as a Bayesian: get posterior + use law of probabilities
in "frequentist statistics"

consider multiple possible estimators

and then analyze their statistical properties

- biased?
- variance?
- consistent?

Maximum likelihood principle

setup: given a parametric family \(p(x; \theta) \) for \(\theta \in \Theta \)
we want to estimate/learn \(\theta \)

\[\hat{\theta}_{ML}(x) = \arg \max_{\theta \in \Theta} p(x; \theta) \quad p \in L(\Theta) \]

"Likelihood function" of \(\theta \)

Example: \(\theta \) can flips
\(X \sim \text{Bin}(n, \theta) \)
\(l_x = 0 : n \)
\[X \sim \text{Bin}(n, \theta) \]

\[p(x; \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \]

Trick: to maximize \(\log L(\theta) \) instead of \(L(\theta) \)

\[\Rightarrow \log L(\theta) \quad \text{[log-likelihood]} \]

Justification: \(\log(.) \) is strictly increasing

i.e. \(a < b \iff \log a < \log b \)

\[\Rightarrow \arg \max_{\theta \in \Theta} \log p(x; \theta) = \arg \max_{\theta \in \Theta} p(x; \theta) \]

\[\log p(x; \theta) = \log \binom{n}{x} + x \log \theta + (n-x) \log (1-\theta) = \ell(\theta) \]

- constant.

\[f'(\theta) = 0 \quad f''(\theta) < 0 \]

look for \(\theta \) s.t. \(\ell'(\theta) = 0 \)

want \(\frac{x}{\theta} - \frac{n-x}{1-\theta} = 0 \)

\[x(1-\theta) - (n-x)\theta = 0 \]

\[\hat{\theta}_{\text{ML}}(x) = \frac{x}{n} \]

hence \(\hat{\theta}_{\text{ML}}(x) = x \) i.e. relative
Some optimization comments:

\[\min_{\Theta} f(\Theta) \quad \implies \quad \nabla f(\Theta) = 0 \]

("stationary pt")

is a necessary condition for a local min when \(\Theta \) is in the interior of \(\Theta \) (when \(f \) is differentiable).

\[\nabla^2 f(\Theta) > 0 \] also need to check Hessian for a local min

\[f''(\Theta) > 0 \]

\(\mathbf{H} > 0 \)

\[\forall \mathbf{u} \in \mathbb{R}^d \]

\(\mathbf{H} \mathbf{u} > 0 \)

\(\Rightarrow \)

only local result in general

but if Hessian \(f''(\Theta) > 0 \) for all \(\Theta \), function is said "convex"

and in this case \(\nabla f(\Theta) = 0 \) \(\Rightarrow \) sufficient for global min.
a otherwise, for a smooth fct., checking at zero gradient & boundary gives you enough information

- be careful with boundary cases i.e. \(\Theta^* \in \text{boundary}(\Theta) \)

 e.g. \(f(0) \neq 0 \)

 \[
 \begin{array}{c}
 \text{Another example} \\
 \end{array}
 \]

- example where the MLE does not exist

Some notes about MLE

- does not always exist \([\Theta^* \in \text{bd}(\Theta) \text{ but } \Theta^* \text{ is open}] \text{ or when } \Theta^* = \{ \theta_0 \} \]

 \(\Theta_0 = [0, 1] \)

- is not necessary unique \(\text{ i.e. multiple maxima } \)

 e.g. mixture models

- is not "admissible" in general \(\text{ [see later] } \)

 stricty "better" estimates
Example 2: Multinomial distribution

Suppose X_i is discrete R.V. on k choices \(\text{"multinoulli"} \)

(we could choose $\Omega = \{1, \ldots, k\}$

but instead, convenient to encode with unit basis in \mathbb{R}^k

i.e. $\sum x_i = e_1, \ldots, e_k$ where $e_j \in \mathbb{R}^k$ \(\text{"one hot encoding"} \)

$e_j = (0, \ldots, 1, \ldots, 0)$ jth coordinate

Parameter for discrete R.V.: $\pi \in \Delta_k$ \(\text{($\Omega = \Delta_k$)} \)

\[\Delta_k = \{ \pi \in \mathbb{R}^k : \pi_j > 0 \text{ all } j, \sum_{j=1}^k \pi_j = 1 \} \]

\(\text{probability simplex on } k \text{ choices} \)

We will write $X \sim \text{Mult}(\pi)$ \(\text{"multinoulli"} \)

Consider iid $X_i \sim \text{Mult}(\pi)$

then $X = \sum_{i=1}^n X_i \sim \text{Mult}(n, \pi)$

\(\text{\"multinomial distribution\"} \)
$X \in \mathbb{N}^K$

$\mathcal{L}_X = \{ (n_1, \ldots, n_K) : n_j \in \mathbb{N}, \sum_{j=1}^K n_j = N \}$

pmf for X:

$p(x | \pi) = \binom{n}{n_1 \ldots n_K} \prod_{j=1}^K \pi_j^{n_j}$

$x = \{ n_1, \ldots, n_K \}$

2. multinomial coeff. \[
\binom{n}{n_1 \ldots n_K} \stackrel{\mathbb{N}}{=} \frac{n!}{n_1! \cdots n_K!}
\]