
IFT 6269: Probabilistic Graphical Models Fall 2017

Lecture 1 — September 5
Lecturer: Simon Lacoste-Julien Scribe: Isabela Albuquerque

1.1 Probabilistic Graphical Models
• Goal: Model multivariate data

• Mix of graph and probability theory. Or, more illustratively:

• Probability vs. Statistics:

Probabilistic model Answers to queries, sampling: data

Probability

Statistics (inverse problem)
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1.2 Applications
Some illustrative examples of Hidden Markov Models (HMM) applications.

Notation:

- Xt: Observed random variable. Represented in the graphical model as a shaded
node.

- Yt: Not observed random variable. Represented in the graphical model as an empty
node.

- Graph edges (−): Represents possible correlations between random variables in the
graphical models. Lack of edges in the graph will represent conditional indepen-
dence assumptions, as we will see later.

Important!

- When modeling a problem using graphical models, random variables represent the
quantities of interest.

- In the context of PGM, a random vector is often just called a random variable – thus
a random variable might be scalar or vector valued.

1.2.1 Example 1: Speech Recognition

Xt: Sound wave encoding for a small time window (e.g. as a spectral decomposition)
Yt: Phoneme

Yt Yt+1 Yt+2

Xt Xt+1 Xt+2

1.2.2 Example 2: Part-of-speech tagging

Xt: Word
Yt: Part-of-speech (word grammatical classification)

DT Verb DT Adj N

This is a red box
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1.2.3 Example 3: Gene finding

Xt: Sequence of nitrogenous base
Yt: Coding or non-coding (i.e. Yt ∈ {0; 1})

G T A A C C G

1.2.4 Example 4: Control system
yt+1 = Ayt +Bvt + εt, (yt is the latent state)
xt = Cyt + ε′t, (Observation)

where yt and xt are continuous vectors and vt is a given control term. The terms ε and ε′
represent the noise in the system. If they are modeled as Gaussian noise, this HMM is a
Kalman Filter.

1.3 Why Graphical Models?
Back to the part-of-speech tagging example:

Notation:

- An observation of T words is represented as (x1, x2, . . . , xT ) , x1:T

- For a vocabulary of size k, xt ∈ {1, . . . , k}

Problem: We want to model p(x1:T ), which corresponds to an exponential size state space.
Thus, ≈ KT parameters have to be estimated to define a probability distribution on x1:T

Trick: make a factorization assumption about the distribution p(x1:T ).

p(x1, . . . , xT ) = f1(x1)f2(x2|x1)f3(x3|x2) . . . fT (xT |xT−1).

Each factor f can be seen as a clique in the graphical model and needs ≈ K2 parameters
to be specified. As we have T factors in this factorization, we reduce the total number of
parameters from KT (exponentially grows with T ) to TK2 (linearly grows with T ).
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Now, back to our problem, say we want to compute the marginal probability of x1, p(x1) =∑
x2,...,xT

p(x1:T ). Using the factorization assumption, we can write p(x1) as:

p(x1) =
∑

x2,...,xT

f1(x1)f2(x2|x1)f3(x3|x2) . . . fT (xT |xT−1). (1.1)

Applying the distributive property of the product over a sum (a(b + c) = ab + ac), we can
rewrite equation 1.1 as

p(x1) = f1(x1)

(∑
x2

f2(x2|x1)

(∑
x3

f3(x3|x2) . . .

(∑
xT

fT (xT |xT−1)

)
. . .

))
. (1.2)

This organized and efficient way to compute the marginal p(x1) is known as the Message
passing algorithm. The term

∑
xT

fT (xT |xT−1) is named message and denoted asMT (xT−1).

The following figure illustrates MT (xT−1) (represented by the red arrow) passing through a
graph.

x1 x2 x3

. . .

xT−1 xT

MT (xT−1)

1.4 Key Themes
1. Representation: how to represent structured probability distributions.

- Related to parameterization (e.g. full table, exponential family)

2. Estimation: given data samples, how do we learn the parameters of the distribution
underlying the observations?

- Related to learning (e.g. Maximum Likelihood Estimation)

3. Inference: answer questions about the data, as computing conditional distributions
p(y|x) or marginals p(x1).

- Efficient computation (e.g. Message passing algorithm)
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