
IFT 6269: Probabilistic Graphical Models Fall 2017

Lecture 4 — September 15
Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu

Disclaimer: These notes have only been lightly proofread.

4.1 Maximum Likelihood principle
Given a parametric family p(· ; θ) for θ ∈ Θ, we define the likelihood function for some observation
x, denoted L(θ), as

L(θ) , p(x; θ) (4.1)

Depending on the nature of the corresponding random variableX, p(· ; θ) here is either the probabil-
ity mass function (pmf) if X is discrete or the probability density function (pdf) if X is continuous.
The likelihood is a function of the parameter θ, with the observation x fixed.

We want to find (estimate) the value of the parameter θ that best explains the observation x. This
estimate is called the Maximum Likelihood Estimator (MLE), and is given by

θ̂ML(x) , argmax
θ∈Θ

p(x; θ) (4.2)

This means θ̂ML(x) is the value of the parameter that maximizes the probability of observation
p(x; ·) (as a function of θ). Usually though, we are not only given a single observation x, but iid
samples x1, x2, . . . , xn of some distribution with pmf (or pdf) p(· ; θ). In that case, the likelihood
function is

L(θ) = p(x1, x2, . . . , xn; θ) =
n∏
i=1

p(xi; θ) (4.3)

4.1.1 Example: Binomial model

Consider the family of Binomial distributions with parameters n and θ ∈ [0, 1].

X ∼ Bin(n, θ) with ΩX = {0, 1, . . . , n}

Given some observation x ∈ ΩX of the random variable X, we want to estimate the parameter θ
that best explains this observation with the maximum likelihood principle. Recall that the pmf of
a Binomial distribution is

p(x; θ) =
(
n

x

)
θx(1− θ)n−x (4.4)

Our goal is to maximize the likelihood function L(θ) = p(x; θ), even though it is a highly non-linear
function of θ. To make things easier, instead of maximizing the likelihood function L(θ) directly,
we can maximize any strictly increasing function of L(θ).
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Since log is a strictly increasing function (ie. 0 < a < b ⇔ log a < log b), one common choice is to
maximize the log likelihood function `(θ) , log p(x; θ). This leads to the same value of the MLE

θ̂ML(x) = argmax
θ∈Θ

p(x; θ) = argmax
θ∈Θ

log p(x; θ) (4.5)

Using the log likelihood function could be problematic when p(x; θ) = 0 for some parameter θ. In
that case, assigning `(θ) = −∞ for this value of θ has no effect on the maximization later on. Here,
for the Binomial model, we have

`(θ) = log p(x; θ)

= log
(
n

x

)
︸ ︷︷ ︸

constant in θ

+x log θ + (n− x) log(1− θ) (4.6)

Now that we know the form of `(θ), how do
we maximize it? We can first search for sta-
tionary points of the log likelihood, that is
values of θ such that

∇θ `(θ) = 0 (4.7)

Or, in 1D, `′(θ) = 0. This is a necessary
condition for θ to be a maximum (see Sec-
tion 4.1.2).

`′(θ) > 0

`′(θ) < 0
`′(θ) = 0

The stationary points of the log likelihood are given by

∂`

∂θ
= x

θ
− n− x

1− θ = 0 ⇒ x− θx− (n− x)θ = 0 ⇒ θ? = x

n
(4.8)

The log likelihood function of the Binomial model is also strictly concave (ie. `′′(θ) < 0), thus θ?
being a stationary point of `(θ) is also a sufficient condition for it to be a global maximum (see
Section 4.1.2).

θ̂ML = x

n
(4.9)

The MLE of the Binomial model is the relative frequency of the observation x, which follows our
intuition. Furthermore, even though it is not a general property of the MLE, this estimator is
unbiased

X ∼ Bin(n, θ) ⇒ EX
[
θ̂ML

]
= EX

[
X

n

]
= nθ

n
= θ (4.10)

Note that we maximized `(θ) without specifying any constraint on θ, even though it is required
that θ ∈ [0, 1]. However, here this extra condition has little effect on the optimization since the
stationary point (4.8) is already in the interior of the parameter space Θ = [0, 1] if x 6= 0 or n. In
two latter cases, we can exploit the monotonicity of ` on Θ to conclude that the maxima are on
the boundaries of Θ (resp. 0 and 1).
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4.1.2 Comments on optimization

• In general, being a stationary point (ie. f ′(θ) = 0 in 1D) is a necessary condition for θ to
be a local maximum when θ is in the interior of the parameter space Θ. However, it is not
sufficient. A stationary point can be either a local maximum or a local minimum in 1D (or a
saddle point in the multivariate case). We also need to check the second derivative f ′′(θ) < 0
for it to be a local maximum.

flocal maximum
f ′′(θ) < 0

stationary
points

• The previous point only gives us a local result. To guarantee that θ? is a global maximum, we
need to know global properties about the function f . For example, if ∀θ ∈ Θ, f ′′(θ) ≤ 0 (i.e.
the function f is concave, the negative of a convex function), then f ′(θ?) = 0 is a sufficient
condition for θ? to be a global maximum.

• We need to be careful though with cases where
the maximum is on the boundary of the parame-
ter space Θ (θ? ∈ boundary(Θ)). In that case, θ?
may not necessarily be a stationary point, mean-
ing that ∇θf(θ?) may be non-zero.

Θ

f ′(θ?) 6= 0

• Similarly for the multivariate case, ∇f(θ?) = 0 is in general a necessary condition for θ? to
be a local maximum if it belongs to the interior of Θ. To make sure it is a local maximum,
we need to check if the Hessian matrix of f is negative definite at θ? (this is the multivariate
equivalent of f ′′(θ?) < 0 in 1D)

Hessian(f)(θ?) ≺ 0 where Hessian(f)(θ?)i,j = ∂f(θ?)
∂θi∂θj

(4.11)

We also get similar results in the multivariate case if we know global properties on the function
f . For example, if the function f is concave, then ∇f(θ?) = 0 is also a sufficient condition
for θ? to be a global maximum. To verify that a multivariate function is concave, we have
to check if the Hessian matrix is negative semi-definite on the whole parameter space Θ (the
multivariate equivalent of ∀θ ∈ Θ, f ′′(θ) ≤ 0 in 1D).

∀θ ∈ Θ, Hessian(f)(θ) � 0 ⇔ f is concave (4.12)
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4.1.3 Properties of the MLE

• The MLE does not always exist. For example, if the estimate is on the boundary of the
parameter space θ̂ML ∈ boundary(Θ) but Θ is an open set.

• The MLE is not necessarily unique; the likelihood function could have multiple maxima.

• The MLE is not admissible in general; for some estimation problems, there exists some other
estimates dominating the MLE for the frequentist risk (see James-Stein estimator, Lecture 5).

4.1.4 Example: Multinomial model

Suppose that Xi is a discrete random variable over K choices. We could choose the domain of this
random variable as ΩXi = {1, 2, . . . ,K}. Instead, it is convenient to encode Xi as a random vector,
taking values in the unit bases in RK . This encoding is called the one-hot encoding, and is widely
used in the neural networks literature.

ΩXi = {e1, e2, . . . , eK} where ej =
(
0 . . . 1 . . . 0

)T
∈ RK

jth coordinate

To get the pmf of this discrete random vector, we can define
a family of probability distributions with parameter π ∈
∆K . The parameter space Θ = ∆K is called the probability
simplex on K choices, and is given by

∆K ,

π ∈ RK ; ∀j πj ≥ 0 and
K∑
j=1

πj = 1

 (4.13)

The probability simplex is a (K − 1)-dimensional object in
RK because of the constraint

∑K
j=1 πj = 1. For example,

here ∆3 is a 2-dimensional set. This makes optimization
over the parameter space more difficult.

π1

π3

π2

∆3

The distribution of the random vector Xi is called a Multinoulli distribution with parameter π, and
is denoted Xi ∼ Mult(π). Its pmf is

p(xi;π) =
K∏
j=1

π
xi,j

j where xi,j ∈ {0, 1} is the jth component of xi ∈ ΩXi (4.14)

The Multinoulli distribution can be seen as the equivalent of the Bernoulli distribution over K
choices (instead of 2). If we consider n iid Multinoulli random vectors X1, X2, . . . , Xn

iid∼ Mult(π),
then we can define the random vector X as

X =
n∑
i=1

Xi ∼ Mult(n, π) with ΩX =

(n1, n2, . . . , nK) ; ∀j nj ∈ N and
K∑
j=1

nj = n


The distribution of X is called a Multinomial distribution with parameters n and π, and is the
analogue of the Binomial distribution over K choices (similar to Multinoulli/Bernoulli). Given
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some observation x ∈ ΩX , we want to estimate the parameter π that best explains this observation
with the maximum likelihood principle. The likelihood function is

L(π) = p(x;π) = 1
Z

n∏
i=1

p(xi;π)

= 1
Z

n∏
i=1

 K∏
j=1

π
xi,j

j

 = 1
Z

K∏
j=1

[
n∏
i=1

π
xi,j

j

] Where Z is a normalization constant
1
Z

=
(

n

n1, n2, . . . , nK

)
= n!
n1! · n2! . . . nK !

= 1
Z

K∏
j=1

π

∑n

i=1 xi,j

j (4.15)

Where nj =
∑n
i=1 xi,j is the number of times we observe the value j (or ej ∈ ΩXi). Note that nj

remains a function of the observation (thus we could write nj(x)), although this explicit dependence
on x is omitted here. Equivalently, we could have looked for the MLE of a Multinoulli model (with
parameter π) with n observations x1, x2, . . . , xn instead of the MLE of a Multinomial model with
a single observation x; the only effect here would be the lack of normalization constant Z in
the likelihood function. Like in Section 4.1.1, we take the log likelihood function to make the
optimization simpler

`(π) = log p(x;π) =
K∑
j=1

nj log πj − logZ︸ ︷︷ ︸
constant in π

(4.16)

We want to maximize `(π) such that π still is a valid element of ∆K . Given the constraints (4.13)
induced by the probability simplex ∆K , this involves solving the following constrained optimization
problem

{
max
π

`(π)
subject to π ∈ ∆K

⇔



max
π

K∑
j=1

nj log πj

s.t. ∀ j, πj ≥ 0
K∑
j=1

πj = 1

(4.17)

To solve this optimization problem, we have 2 options:

• We could reparametrize (4.17) with π1, π2, . . . , πK−1 ≥ 0 with the constraint
∑K−1
j=1 πj ≤ 1

and set πK = 1−
∑K−1
j=1 πj . The log likelihood function to maximize would become

`(π1, π2, . . . , πK−1) =
K−1∑
j=1

nj log πj + nK log (1− π1 − π2 − . . .− πK−1) (4.18)

The advantage here would be that the parameter space would be a full dimensional object
∆c
K−1 ⊂ RK−1, sometimes called the corner of the cube, which is a more suitable setup for

optimization (in particular, we could apply the techniques from Section 4.1.2)

∆c
K−1 =

(π1, π2, . . . , πK−1) ∈ RK−1 ; ∀j πj ≥ 0 and
K−1∑
j=1

πj ≤ 1

 (4.19)
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π1

π3

π2

∆3∆3 is a 2-dimensional
set in R3

optimize here
full dimensional set in R2

π1

π2

∆c
2

• We choose to use the Lagrange multipliers approach. The Lagrange multipliers method can
be used to solve constrained optimization problems with equality constraints (and, more
generally, with inequality constraints as well) of the form{

max
π

f(π)
s.t. g(π) = 0

Here, we can apply it to the optimization problem (4.17); ie. the maximization of `(π), under the
equality constraint

K∑
j=1

πj = 1 ⇔ 1−
K∑
j=1

πj︸ ︷︷ ︸
= g(π)

= 0 (4.20)

The fundamental part of the Lagrange multipliers method is an auxiliary function J (π, λ) called
the Lagrangian function. This is a combination of the function to maximize (here `(π)) and the
equality constraint function g(π).

J (π, λ) =
K∑
j=1

nj log πj + λ

1−
K∑
j=1

πj

 (4.21)

Where λ is called a Lagrange multiplier. We dropped the constant Z since it has no effect on the
optimization. We can search the stationary points of the Lagrangian, i.e pairs (π, λ) satisfying
∇πJ (π, λ) = 0 and ∇λJ (π, λ) = 0. Note that the second equality is equivalent to the equality
constraint in our optimization problem g(π) = 0. The first equality leads to

∂J
∂πj

= nj
πj
− λ = 0 ⇒ π?j = nj

λ
(4.22)

Here, the Lagrange multiplier λ acts as a scaling constant. As π? is required to satisfy the constraint
g(π?) = 0, we can evaluate this scaling factor

K∑
j=1

π?j = 1 ⇒ λ =
K∑
j=1

nj = n
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Once again, in order to check that π? is indeed a local maximum, we would also have to verify that
the Hessian of the log likelihood at π? is negative definite. However here, ` is a concave function
(∀π, Hessian(`)(π) � 0). This means, according to Section 4.1.2, that π? being a stationary point
is a sufficient condition for it to be a global maximum.

π̂
(j)
ML = nj

n
(4.23)

The MLE of the Multinomial model, similar to the Binomial model from Section 4.1.1, is the
relative frequency of the observation vector x = (n1, n2, . . . , nK), and again follows our intuition.
Note that π?j ≥ 0, which was also one of the constraints of ∆K .

4.1.5 Geometric interpretation of the Lagrange multipliers method

The Lagrange multipliers method is applied to solve constrained optimization problems of the form{
max
π

f(π)
s.t. g(π) = 0

(4.24)

With this generic formulation, the Lagrangian is J (x, λ) = f(x) + λg(x), with λ the Lagrange
multiplier. In order to find an optimum of (4.24), we can search for the stationary points of the
Lagrangian, ie. pairs (x, λ) such that ∇xJ (x, λ) = 0 and ∇λJ (x, λ) = 0. The latter equality is
always equivalent to the constraint g(x) = 0, whereas the former can be rewritten as

∇xJ (x, λ) = 0 ⇒ ∇f(x) = −λ∇g(x) (4.25)

At a stationary point, the Lagrange multiplier λ is a scaling factor between the gradient vectors
∇f(x) and ∇g(x). Geometrically, this means that these two vectors are parallel.

∇f(x?)

∇g(x?)

g(x) = 0

x?

Level sets

of f
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