IFT 6269: Probabilistic Graphical Models Fall 2016
Lecture 6 — September 20

Lecturer: Simon Lacoste-Julien Scribe: Zakaria Soliman

Disclaimer: These notes have only been lightly proofread.

6.1 Linear Regression

6.1.1 Motivation
We want to learn a prediction function f : X — Y. Where X C R? and if:

(1) Y =40,1}, it’s a binary classification
(2) ¥ ={0,1,--- ,k}, it’s a multiclass classification
(3) Y C R, it’s a regression problem.

There are several perspectives in modeling the distribution of the data:

generative perspective

Here, we model the joint distribution p(x,y). We make more assumptions in this case. This
leads it to be less robust for predictions (but is a more flexible approach if we are not sure
what is the task we are trying to solve).

conditional perspective

We only model the conditional probability p(y|z). Early 2000s, it was called the discrimina-
tive perspective, but Simon prefers to refer to it now as the conditional approach.

fully discriminative perspective

Models f : X — Y directly and estimate the function f by using the loss ¢(y,y') information.
This approach is the most robust.

6.1.2 Linear regression model

We take a conditional approach to regression. Let Y € R and let’s assume that Y depends
linearly on X € RY. Linear regression is a model of the following form:

p(y|X, W) = N(y|<w ) X)» 02)
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Where w € R? is the parameter (or weight) vector. Equivalently, we could also rewrite
the model as
Y =w'X+e¢

Where the noise € ~ N(0,0?) is a random variable that is independent of X

Remark 6.1.1 Note that if there is an offset wy € R, that is, if Y = wo+w'X +¢€, we will
use an "offset” notation for x:
_(x
x=17]

where X € R4 and 1 is the constant feature. Thus, we have:

Ty — w! %
W X =W, X+ wy

Where wy is the bias/offset

Let D = (Xpn,Yn)l~; be a training set of conditionally i.i.d. random variables i.e. X; ~
whatever and Y;|X; ~ N ({w, X;),0?). Each y; is a response on observation x;. We consider
the conditional likelihood of all outputs given all inputs:

n

Py yalxe, o Xasw, o) = T p(yilxi; w, o).
i=1

And we have that Y;|X; P N(w'X;,0?) (ie plylx;) =
the log-likelihood gives us the following expression:

/72;—(;2 exp (‘_7(%_2:’;&)2)) taking

10g p(Y1:n X105 W, 0%) = log p(yilx:)
=1

S wi-wx)® L 2

= ;:1 — 557 b log(2mo”)

n oy L (i —wixy)?
=5 log(2mo®) — 5 E p

Notice that maximizing the likelihood comes down to the following minimization problem
w.r.t. w:
find W = argming, 37", (y; — w'x;)2.

Define the design matrix X as
— x|

X = : € R4

e
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Y1
and denote by y the vector of coordinates | : |. This notation allows us to rewrite the

Yn
residual sum of squares in a more compact fashion as:

n

Yy —wix)® = |ly — Xwl?

i=1
Thus, we can rewrite the log likelihood as:

y—Xw|? n
—logp(y|x) = H202H + 3 log(2mo?)

Finally, the minimization problem over w can be rewritten as:

find W = argmin,, |ly — Xw|’.

wl

Remark 6.1.2 The minimization of ||y — Xw||* w.r.t. w can also be viewed geometrically
as choosing W so that the vector Xw 1is the orthogonal projection of y onto the column space

of X

Now let us find w:

0 T _ 9 2 T T T
5o = Xw) (v = Xw) = ||ly[]* — 2y Xw + w X Xw]
=0-2X"y +2X"'Xw =0 (using Vy(w' Aw) = (A + AT)w))
= (X X)w=X"y normal equation

e If XX is invertible, there is a unique solution w = (X'X)" X Ty

e If n < d, then X is not full rank and so XX is not invertible. In this case we
could use the pseudo-inverse of X, X' and choose the minimum norm ||w/|| solution
amongst arg min,, ||y — Xw||>. The problem we face is that the pseudo-inverse is not
numerically stable.

In the latter case, it would be better to use regularization techniques (see next section).
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6.1.3 Ridge regression
We can either interpret ridge regression as adding a norm regularizer to the least-square
EMR, or as replacing the MLE for w with a MAP by adding a prior p(w):
Ing(Wb’, X) = logp(yl:n‘xlzn; W) + logp(W) + cst
Where p(w) is the prior over w and:

I

plw) = N(w[0, 7)

So we have that:
A 2
lng(W|y, X) = logp(ylzn|xlzn; W) + cst — 5 ||W||
and then,

Ve =0= X'X+N)w=X"y
= Wyap = (XX 4+ )Xy

Notice that (XX + AI) is always invertible.

Remark 6.1.3 —log p(wly, x) is strongly convex in w. So there is a unique global minimum

Remark 6.1.4 [t is good practice to standardize or normalize the features. Standardizing
means make the features have empirical zero mean and unit standard deviation; normalizing
can mean different things, e.g. scale them to [0,1] or to a unit norm.

6.2 Logistic Regression

Let’s turn our attention to classification problems. For this model, we will assume that
Y € {0,1} and X € R% We make no additional assumptions apart that p(x|Y = 1) and
p(x]Y = 0) are densities. Our goal is to model p(Y|X)

p(Y =1, X =x)
p(Y=1,X=x)+pY =0,X =x)
1

(Y=1,X=x)
L+ z(Y:o,X:x)

1
1+ exp(—f(x))

p(Y = 11X = x) =
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Figure 6.1: Sigmoid function.
Where (x v =1 v =1
p = X = p ==
f(z) = log +log —/———=
p(X =x|Y =0) p(Y =0)
—_——
class-conditional ratio prior odd ratio
Is the log odds ratio. In general we have:
p(Y =1[X =x) =0(f(x))
where 0(z) 1= 1= is the sigmoid function shown in Figure 2.1,
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The sigmoid function has the following properties:

Property 6.2.1
VzeR,0(—2)=1-0(z)

Property 6.2.2
VzeR,0'(z) =0a(2)(1 —0(z)) =o(2)o(—2)

Example 6.2.1 Finally, we make the following observation that a very large class of proba-
bilistic models yield logistic-regression types of models (thus explaining why logistic regression
is fairly robust).

Consider that the class conditional is in the exponential family:

p(x|m) = h(x)exp(n ' T(x) — A(n)).

X =x[Y =1) p(Y =1)
f(x) _1ng(X:X|Y:0) —l—logp(i

= (1, = 1) "T(x) + Amo) — Alm,) + log(-——)
~wp(x)

Where w = (A(no)—ATE%I)nflog(ﬁD and ¢(x) = (T(lx)). Thus we have a logistic regression

model with features ¢(x):

ply = 1]x) = o(w' ¢(x))
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