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Disclaimer: These notes have only been lightly proofread.

6.1 Linear Regression

6.1.1 Motivation
We want to learn a prediction function f : X → Y . Where X ⊆ Rd and if:

(1) Y = {0, 1}, it’s a binary classification

(2) Y = {0, 1, · · · , k}, it’s a multiclass classification

(3) Y ⊆ R, it’s a regression problem.

There are several perspectives in modeling the distribution of the data:

generative perspective

Here, we model the joint distribution p(x, y). We make more assumptions in this case. This
leads it to be less robust for predictions (but is a more flexible approach if we are not sure
what is the task we are trying to solve).

conditional perspective

We only model the conditional probability p(y|x). Early 2000s, it was called the discrimina-
tive perspective, but Simon prefers to refer to it now as the conditional approach.

fully discriminative perspective

Models f : X → Y directly and estimate the function f̂ by using the loss `(y, y′) information.
This approach is the most robust.

6.1.2 Linear regression model
We take a conditional approach to regression. Let Y ∈ R and let’s assume that Y depends
linearly on X ∈ Rd. Linear regression is a model of the following form:

p(y|x,w) = N (y|〈w ,x〉, σ2)
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Where w ∈ Rd is the parameter (or weight) vector. Equivalently, we could also rewrite
the model as

Y = w>X + ε

Where the noise ε ∼ N (0, σ2) is a random variable that is independent of X

Remark 6.1.1 Note that if there is an offset w0 ∈ R, that is, if Y = w0 + w>X + ε, we will
use an "offset" notation for x:

x =
(

x̃
1

)
,

where x̃ ∈ Rd−1 and 1 is the constant feature. Thus, we have:

w>x = w>1:d−1x̃ + wd

Where wd is the bias/offset

Let D = (xn, yn)ni=1 be a training set of conditionally i.i.d. random variables i.e. Xi ∼
whatever and Yi|Xi ∼ N (〈w , Xi〉, σ2). Each yi is a response on observation xi. We consider
the conditional likelihood of all outputs given all inputs:

p(y1, · · · , yn|x1, · · · ,xn; w, σ2) =
n∏
i=1

p(yi|xi; w, σ2).

And we have that Yi|Xi
indep∼ N (w>Xi , σ

2) (i.e. p(yi|xi) = 1√
2πσ2 exp

(
−(yi−w>xi)2

2σ2

)
) taking

the log-likelihood gives us the following expression:

log p(y1:n|x1:n; w, σ2) =
n∑
i=1

log p(yi|xi)

=
n∑
i=1

[
− (yi −w>xi)2

2σ2 − 1
2 log(2πσ2)

]

= −n2 log(2πσ2)− 1
2

n∑
i=1

(yi −w>xi)2

σ2 .

Notice that maximizing the likelihood comes down to the following minimization problem
w.r.t. w:

find ŵ = arg minw
∑n
i=1 (yi −w>xi)2.

Define the design matrix X as

X =


x>1
...

x>n

 ∈ Rn×d
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and denote by y the vector of coordinates


y1
...
yn

. This notation allows us to rewrite the

residual sum of squares in a more compact fashion as:
n∑
i=1

(yi −w>xi)2 = ‖y−Xw‖2

Thus, we can rewrite the log likelihood as:

− log p(y|x) = ‖y−Xw‖2

2σ2 + n

2 log(2πσ2)

Finally, the minimization problem over w can be rewritten as:

find ŵ = arg minw ‖y−Xw‖2.

Remark 6.1.2 The minimization of ‖y−Xw‖2 w.r.t. w can also be viewed geometrically
as choosing ŵ so that the vector Xŵ is the orthogonal projection of y onto the column space
of X

Now let us find ŵ:

∂

∂w
(y−Xw)>(y−Xw) = ∂

∂w
[
‖y‖2 − 2y>Xw + w>X>Xw

]
= 0− 2X>y + 2X>Xw = 0 (using ∇w(w>Aw) = (A + A>)w))

⇐⇒ (X>X)w = X>y normal equation

• If X>X is invertible, there is a unique solution ŵ = (X>X)−1X>y

• If n < d, then X is not full rank and so X>X is not invertible. In this case we
could use the pseudo-inverse of X, X† and choose the minimum norm ‖w‖ solution
amongst arg minw ‖y−Xw‖2. The problem we face is that the pseudo-inverse is not
numerically stable.

In the latter case, it would be better to use regularization techniques (see next section).
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6.1.3 Ridge regression
We can either interpret ridge regression as adding a norm regularizer to the least-square
EMR, or as replacing the MLE for w with a MAP by adding a prior p(w):

log p(w|y,x) = log p(y1:n|x1:n; w) + log p(w) + cst

Where p(w) is the prior over w and:

p(w) = N (w|0, I
λ

)

So we have that:

log p(w|y,x) = log p(y1:n|x1:n; w) + cst− λ

2 ‖w‖
2

and then,

∇w = 0⇒ (X>X + λI)w = X>y
⇒ ŵMAP = (X>X + λI)−1X>y

Notice that (X>X + λI) is always invertible.

Remark 6.1.3 − log p(w|y,x) is strongly convex in w. So there is a unique global minimum

Remark 6.1.4 It is good practice to standardize or normalize the features. Standardizing
means make the features have empirical zero mean and unit standard deviation; normalizing
can mean different things, e.g. scale them to [0, 1] or to a unit norm.

6.2 Logistic Regression
Let’s turn our attention to classification problems. For this model, we will assume that
Y ∈ {0, 1} and X ∈ Rd. We make no additional assumptions apart that p(x|Y = 1) and
p(x|Y = 0) are densities. Our goal is to model p(Y |X)

p(Y = 1|X = x) = p(Y = 1, X = x)
p(Y = 1, X = x) + p(Y = 0, X = x)

= 1
1 + p(Y=1,X=x)

p(Y=0,X=x)

= 1
1 + exp(−f(x))
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Figure 6.1: Sigmoid function.

Where
f(x) = log p(X = x|Y = 1)

p(X = x|Y = 0)︸ ︷︷ ︸
class-conditional ratio

+ log p(Y = 1)
p(Y = 0)︸ ︷︷ ︸

prior odd ratio

Is the log odds ratio. In general we have:

p(Y = 1|X = x) = σ(f(x))

where σ(z) := 1
1+e−z is the sigmoid function shown in Figure 2.1.
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The sigmoid function has the following properties:

Property 6.2.1
∀z ∈ R, σ(−z) = 1− σ(z)

Property 6.2.2
∀z ∈ R, σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z)

Example 6.2.1 Finally, we make the following observation that a very large class of proba-
bilistic models yield logistic-regression types of models (thus explaining why logistic regression
is fairly robust).

Consider that the class conditional is in the exponential family:

p(x|η) = h(x) exp(η>T(x)− A(η)).

f(x) = log p(X = x|Y = 1)
p(X = x|Y = 0) + log p(Y = 1)

p(Y = 0)
= (η1 − η0)>T(x) + A(η0)− A(η1) + log( π

1− π )

= w>φ(x)

Where w =
(

η1−η0
A(η0)−A(η1)+log( π

1−π )

)
and φ(x) =

(
T(x)

1

)
. Thus we have a logistic regression

model with features φ(x):

p(y = 1|x) = σ(w>φ(x))
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