
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 8 — September 28
Lecturer: Simon Lacoste-Julien Scribe: Eeshan Gunesh Dhekane and Younes Driouiche

Disclaimer: These notes have only been lightly proofread.

8.1 Logistic Regression
About Logistic Regression : Let’s turn our attention to the binary classification problem!
We define it as the problem of learning a map from the set of input data (usually a subset
of Rd for some d ∈ N) to the set of two labels (usually denoted by {0, 1}). There are two
major approaches to the classification problem : Generative and Discriminative. The
generative approach models the distribution of the input data along with the distribution of
the labels given the input data. The discriminative approach, on the other hand, models only
the distribution of the labels given the input data. Logistic Regression is a discriminative
approach to the problem of binary classification. In this approach, we only model and
learn the required distributions of p (Y | X), where X and Y represent the random vectors
corresponding to the input data and the corresponding labels respectively. Despite this
simplicity in the modeling of the problem, logistic regression is a robust approach. This is
because many other models share the form of p (Y | X) with that of this model. Let us begin
our discussion of logistic regression with the mathematical formulation.

Formulation : Let X denote the random vector that corresponds to the input data. We
assume that X ∈ Rd for some d ∈ N. Let Y denote the random variable corresponding to
the labels of input data. For the binary classification problem, we assign values of 0 and
1 to the two labels. Thus, we have Y ∈ {0, 1}. Our goal is to model and learn p (Y | X),
which is the distribution of the labels given the input data. We model the distributions
p1 = p (Y = 1 | X = x) and p0 = 1− p1 = p (Y = 0 | X = x) as functions of x. The form of
the p1 distributions is chosen as the Sigmoid Function of linear transformation of x (We
will see the reasons later). Thus, we have :

p (Y = 1 | X = x) = σ
(
w>x

)
, where w ∈ Rd is the parameter of the model (8.1)

This form of p(Y = 1 | X = x) gives an expression for the target distribution p (Y | X) :

p (Y = y | X = x) =
(
σ
(
w>x

))y
·
(
1− σ

(
w>x

))(1−y)
= Bernoulli

(
σ
(
w>x

))
(8.2)

8-1

Lecture 8 — September 28 Fall 2018

Now, letD = {(xi, yi)}ni=1 denote the given dataset with xi ∈ Rd, yi ∈ {0, 1} ∀ i ∈ {1, . . . , n}.
Then, the goal of learning p (Y | X) becomes the problem of learning w from the given
dataset D, which we will consider through the next sections.

Generative Motivation [Optional] : We stated earlier that logistic regression is a fairly
robust approach. We also defined p (Y = 1 | X = x) as a function of x in a particular form. In
this subsection, we provide a generative motivation that tries to justify these statements and
definitions. For this, we make no major assumptions except for the existence of probability
density functions p (x | Y = 1) and p (x | Y = 0) in Rd (These distributions are called as
Class-Conditional Distributions). Starting with the class-conditional distributions, our
goal is to obtain p(Y |X). We do in the following manner :

p(Y = 1|X = x) = p(Y = 1, X = x)
p (X = x) = p(Y = 1, X = x)

p(Y = 1, X = x) + p(Y = 0, X = x)

= 1
1 + p(Y=0,X=x)

p(Y=1,X=x)

= 1

1 + e− log p(Y =1,X=x)
p(Y =0,X=x)

= 1
1 + e−f(x) (8.3)

Thus, from the previous equation, we get :

p(Y = 1|X = x) = 1
1 + e−f(x) = σ(f(x)) where σ(z) = 1

1+e−z is the Sigmoid function (8.4)

Here, f(x) is the Log-Odds Ratio and is defined as follows :

f(x) = log p(Y = 1, X = x)
p(Y = 0, X = x) = log p(X = x|Y = 1)

p(X = x|Y = 0)︸ ︷︷ ︸
Class-Conditional Ratio

+ log p(Y = 1)
p(Y = 0)︸ ︷︷ ︸

Prior Odds Ratio

(8.5)

Now, note that a major proportion of the common distributions used for modeling are special
cases of the Exponential Family of distributions (We will study this later in the course).
The distribution is specified by two functions h(x), T (x) and is defined as given below :

pexp-fam(x |
Cannonical Parameter︷︸︸︷

η) = h(x)
exp(A(η)︸ ︷︷ ︸

Log-Partition Function

) · exp(

Linear in η, T (x)︷ ︸︸ ︷
η> T (x)︸ ︷︷ ︸

Sufficient Statistics

) (8.6)

Let p(Y = 1) = π and p (X = x | Y = y) = pexp-fam(x | ηy) ∀ y ∈ {0, 1}. Then, we can
write f(x) from [8.5] in terms of a Weight Vector w and a Feature Map φ(x) as :

f(x) = w>φ(x), with w =
(

η1 − η0
A(η0)− A(η1) + log π

1−π

)
and φ(x) =

(
T (x)

1

)
(8.7)

8-2

Lecture 8 — September 28 Fall 2018

Thus a generative model with class-conditionals in the exponential family yield p(Y = 1 |
X = x) = σ

(
w>φ(x)

)
, which is precisely the logistic regression model (with feature map

φ(x)). As a concrete example (exercise to the reader), with p (X = x | Y = y) = N (x | µy,Σy)
(the multivariate Gaussians are an exponential family), then we have 1) if Σ0 = Σ1, that

φ(x) =
(

x
1

)
– this is the linear regression model; 2) otherwise, if you use different covariances

for the different classes, then φ(x) =

xx>
x
1

 (see also assignment 2)! Note that h(x) in (8.6)

does not appear in the definition of f(x), even though it does influence the distribution given
by the class-conditional. This means that there are many different generative models which
gives the same σ

(
w>φ(x)

)
model for p(Y = 1 | X = x), and thus the logistic regression

model is robust to changes in these choices, which is what we meant by saying that logistic
regression is a more robust model than the generative model approach.

8.2 Sigmoid Function and Properties
In this section, we provide a (quick) review of some of the properties of the Sigmoid function.
It is formally defined as follows :

σ :]−∞,+∞[→]0, 1[and σ (z) = 1
1 + e−z

∀ z ∈]−∞,+∞[(8.8)

The figure [8.1] shows the graph of the Sigmoid function (over [−10,+10]).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

Figure 8.1: Sigmoid function.

Below are some important properties of the Sigmoid function (Prove using [8.8]. Exercise!)

8-3

Lecture 8 — September 28 Fall 2018

Property 8.2.1 ∀z ∈ R, σ(−z) = 1− σ(z)

Property 8.2.2 ∀z ∈ R, σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z)

Property 8.2.3 limz→−∞ σ (z) = 0 and limz→+∞ σ (z) = 1

8.3 Maximum Conditional Likelihood
Recap : From subsection Formulation [8.1], we have the following model for p(Y | X) :

p(y = 1|x) = σ
(
w>x

)
, p(y = 0|x) = 1− σ

(
w>x

)
= σ(−w>x) and thus,

Y |X = x ∼ Bernoulli
(
σ(w>x)

)
. Equivalently, p(y|x) =

(
σ(w>x)

)y (
σ(−w>x)

)1−y

(8.9)

Maximum (Conditional) Likelihood : From the subsection Formulation [8.1], we also saw
that the problem of modeling p (Y | X) becomes the problem of learning w from the dataset
D. We will use the method of Maximum Conditional Likelihood to estimate the parameter
w of the model. Given the dataset D = (xi, yi)ni=1, the (conditional) log-likelihood is :

`(w) =
n∑
i=1

log(p(yi|xi; w)

=
n∑
I=1

[
yi log

(
σ(w>xi)

)
+ (1− yi) log

(
σ(−w>xi)

)]
(8.10)

Now, in order to solve for w, we first need to find the Stationary Points of `(w), where
we have ∇w`(w) = 0. Towards this, let us define vi as follows : vi = w>xi. Then, we have
∇wσ(w>xi) = ∇wσ(vi) = xi [σ(vi)σ(−vi)]. Now, we can evaluate ∇w`(w) as follows :

∇w`(w) =
n∑
i=1

xi
[
yi
σ(vi)σ(−vi)

σ(vi)
− (1− yi)

σ(vi)σ(−vi)
σ(−vi)

]
=

n∑
i=1

xi

yi(σ(−vi) + σ(vi)︸ ︷︷ ︸
=1

)− σ(vi)

(8.11)

Thus, we get the required expression for ∇w`(w) :

∇w`(w) =
n∑
i=1

xi
[
yi − σ

(
w>xi

)]
(8.12)

8-4

Lecture 8 — September 28 Fall 2018

Solving for w : It turns out that ∇w`(w) = 0 is what is known as a Transcendental
Equation. Such equations are often hard to solve and do not have closed-form solutions.
Thus, we are left with the choice of using Numerical Methods to find the maximum con-
ditional likelihood estimate.
The next section provides a description of some useful numerical methods.

Remark 8.3.1 If we consider Y = {−1, 1}, then we can encode both cases in one equation
as follows:

p(y|x) = σ(y ·w>x)

Remark 8.3.2 In contrast to the transcendental equation obtained for the logistic expres-
sion approach, we had obtained a Linear Equation in the case of least square regression
approach. Recall that we obtained ∇w`(w) = ∑n

i=1 xi[yi − w>xi] and hence, solving for w
via setting ∇w`(w) = 0 is essentially solving a linear equation in w!

8.4 Numerical Optimization
Let us start with a function f defined for some variable w over a domain D. We want to
solve the problem of minimizing f(w) over this domain :

Minimize f(w) over D ≡ minw∈D f(w) (8.13)

In our case w ∈ Rd and thus, the domain is D = Rd.

Gradient Descent [1st Order Method]
Motivation: The motivation for this approach is the fact that the gradient of a function
points in the direction of the maximum increase in the function. Thus, in order to minimize
a function, the natural decision is to follow the direction of the maximum decrease in the
function. This can be achieved by traveling in the direction opposite to that of the gradient.

Algorithm : The gradient descent algorithm is described below :

1. Initialize : w0.

2. Update : wt+1 = wt − γt∇f(wt).

3. Iterate : If not converged, go to Update step.

8-5

Lecture 8 — September 28 Fall 2018

Here, γt is the size step at iteration t. The γt is a hyperparameter and needs to be chosen
appropriately. Note that if the γt has a very small value, then the convergence is very slow.
However, if γt has a very large value, then the algorithm may not converge at all (it may
diverge, for instance). Thus, we need to have conditions/heuristics to choose γt properly.

Some Step Size Rules and Heuristics :

(a) We can set the step-size to be a constant. This constant is chosen to be equal to γt = 1
L

where L is the Lipschitz Constant of ∇f . The Lipschitz constant of a vector function
∇f is the smallest number L such that for all w,w′ in the domain of the function, we
have :

‖∇f(w)−∇f(w′)‖ ≤ L ‖w−w′‖

(b) Decreasing Step-Size Rule : We can set γt = C

t
where C is a constant. The heuristic

behind this is that we we want to be able to cover all the domain (achieved by having∑
t γt =∞). However, we also want not to deviate far away so that we can converge on

the solution (achieved by having ∑t γ
2
t <∞).

(c) We can choose γt by solving : minγ∈R f(wt + γdt) where dt is the direction for update.
This method is called Line Search. However, since this approach is in general costly,
we can do approximate search1.

Newton’s Method [2nd Order Method]
Motivation : Here, we approximate the given function in terms of its Quadratic Ap-
proximation. Now, it is relatively easy to optimize a quadratic function rather than the
given function, which might not have desirable convex/concave nature. We use Taylor
Expansion of the given function to obtain the quadratic approximation as follows :

f(w) = f(wt) +∇f(wt)>(w−wt) + 1
2(w−wt)>H(wt)(w−wt)︸ ︷︷ ︸

Quadratic Approximation

+ O (‖w−wt‖)3︸ ︷︷ ︸
Taylor’s Remainder

= Qt(w) +O (‖w−wt‖)3

where Qt(w) = f(wt) +∇f(wt)>(w−wt) + 1
2(w−wt)>H(wt)(w−wt) (8.14)

Here, H(wt) is the Hessian of the function f and Qt(w) is a quadratic approximation
function for f(w) at w = wt. The update formula for wt+1 is obtained by minimizing this
quadratic approximation Qt(w) :

∇wQt(w) = 0⇒ ∇f(wt) +H(wt)(w−wt) = 0⇒ w−wt = −H−1(wt)∇f(wt) (8.15)
1For example, we can have Armijo Line Search and Conditions. For more details, please refer to the

book Convex Optimization by Stephen Boyd and Lieven Vandenberghe

8-6

http://web.stanford.edu/~boyd/cvxbook/

Lecture 8 — September 28 Fall 2018

Damped Newton’s Method: in order to Stabilize Newton’s method, we incorporate a
step size of γt. The update step is given as follows :

wt+1 = wt − γtH−1(wt)∇f(wt) (8.16)

Algorithm : The algorithm for (Damped) Newton’s method is given below :

1. Initialize : w0.

2. Update : wt+1 = wt − γtH−1(wt)∇f(wt).

3. Iterate : Until some condition is met (‖wt+1 −wt‖ ≤ ε). If not, go to Update
step.

Advantages and Disadvantages :

• Convergence : Newton’s method usually gives a much faster convergence (in terms
of the number of iterations) compared to the gradient descent method. However, each
iteration of Newton’s method is more costly than that of the gradient descent method.
Specifically, gradient descent update takes O (d) time and space because we need to
manipulate d−dimensional vectors and gradients. However, Newton’s method involves
calculation of inverse of Hessian, which requires O (d2) space and takes O (d3) time.
Thus, there is a trade-off in number of iterations till convergence versus the complexity
of each iteration.

• Affine Invariance and Role of H−1: Newton’s method is Affine Invariant, which
means that it is invariant to the re-scaling of variables. The reason behind this is that
the update term of Newton’s method has the inverse of Hessian, which transforms
the space to make it “well-conditioned”. We demonstrate the intuitive benefits of this
property and the effect of the presence of Hessian-inverse in the following (optional)
subsection.

The Role of H−1 [Optional] : We consider a very simple example, where we have w ∈ D =
R2. Let the function to minimize be given by f(w) = w2

1 + w2
2, where wi (i∈{1, 2}) denotes

the i−th component of w. Let us try to minimize this function using gradient descent and
Newton’s method. We compute the gradient and the Hessian for f(w) :

8-7

Lecture 8 — September 28 Fall 2018

∇f(w) = 2
[

(wt)1
(wt)2

]
∈ R2 and H(f(w)) = 2

[
1 0
0 1

]
, i.e., H−1(f(w)) = 1

2

[
1 0
0 1

]
Gradient Descent : wt+1 = wt − 2γtwt ⇒ wt+1 −wt = ∆wt = −2γtwt

Newton’s Method : wt+1 = wt − γtwt ⇒ wt+1 −wt = ∆wt = −γtwt (8.17)

Since the Hessian-inverse is proportional to identity matrix, gradient descent and Newton’s
method have essentially the same update steps (except for constants). Further, the update
terms ∆wt are proportional to w and thus, the updates from wt to wt+1 are both directly
along the direction from wt to the global minimum at (0, 0). However, let us re-parameterize
w using u as w1 = u1

a
, w2 = u2

b
(a 6= b). Thus, the same function f(w) is now a function

g(u) with g(u) = u2
1
a2 + u2

2
b2 . Now, we compute the gradient and Hessian for g(u) as follows :

∇g(u) = 2
[(ut)1

a2
(ut)2
b2

]
∈ R2 and H(g(u)) = 2

[
1
a2 0
0 1

b2

]
, i.e., H−1(g(u)) = 1

2

[
a2 0
0 b2

]

Gradient Descent : ut+1 = ut − 2γt
[(ut)1

a2
(ut)2
b2

]
⇒ ut+1 − ut = ∆ut = −2γt

[(ut)1
a2

(ut)2
b2

]

Newton’s Method : ut+1 = ut − γt
[
a2 0
0 b2

] [(ut)1
a2

(ut)2
b2

]
⇒ ut+1 − ut = ∆ut =

[
u1
u2

]
(8.18)

Now, we see that ∆ut for gradient descent is not proportional to ut because a 6= b. Hence,
the direction of the update ∆ut is not ideal because it does not point towards the global
minimum at (0, 0). This is the effect of re-parameterization. However, note that the presence
of H−1(g(u)) makes the update term of Newton’s method proportional to ut. This makes
the direction of the update once again point towards the global minimum. Thus, we can see
that Newton’s method is affine invariant due to presence of the Hessian-inverse in the update
step. The figures [8.2] and [8.3] illustrate the comparison of gradient descent updates and
Newton method updates for an elliptic loss function and a circular loss function respectively.

8.5 IRLS : Iterative Reweighted Least Square
Formulation : Newton’s method applied to logistic regression is often called as IRLS. We
use Newton’s method to solve the transcendental equation we encountered earlier. Recall

8-8

Lecture 8 — September 28 Fall 2018

Figure 8.2: For an elliptic loss function, Newton method updates point in the ideal direction,
whereas the gradient descent updates do not. This demonstrates the role played by the
inverse of the Hessian in Newton method updates.

Figure 8.3: The gradient descent updates and Newton method updates are essentially iden-
tical (except for a scaling constant). For a given initialization of the parameter, they both
point in the ideal direction and are coincident.

8-9

Lecture 8 — September 28 Fall 2018

from [8.12] that ∇`(w) = ∑n
i=1 xi[yi − σ(w>xi)]. Let v ∈ Rd be any given vector. Then :

H = H(`(w)) = −
∑

1≤i≤n
xix>i σ(w>xi)σ(−w>xi)

⇒v>Hv = −
∑

1≤i≤n
(v>xi)(x>i v)σ(w>xi)σ(−w>xi) = −

∑
1≤i≤n

(v>xi)2︸ ︷︷ ︸
≥0

σ(w>xi)︸ ︷︷ ︸
>0

σ(−w>xi)︸ ︷︷ ︸
>0

⇒v>Hv ≤ 0 ∀ v ∈ Rd ⇒ H (`(w)) is negative semi-definite
⇒`(w) is concave⇒ Newton’s updates would indeed maximize log-likelihood. (8.19)

Let X =

...

—x>i —
...

n×d

be the Design Matrix, y =

...
yi
...

d×1

and µ =

...
µi
...

d×1

,

where ∀ i ∈ {1, . . . , n}, we have µi = σ(w>xi), xi is the i−th input data and yi is the label
corresponding to xi. Then, ∇`(w) and H(`(w)) can be expressed as :

∇`(w) =
n∑
i=1

xi(yi − µi) = X>(y− µ) and H(`(w)) = −X>D(w)X (8.20)

Here, D is the n × n diagonal matrix defined as : Dii = µi(1 − µi) ∀ i ∈ {1, . . . , d}. Based
on this notation, the Newton’s method updates are given as follows :

wt+1 = wt − (−X>DtX)−1X>(y− µt)
= (X>DtX)−1

[
(X>DtX)wt + X>(y− µt)

]
= (X>DtX)−1(X>Dtzt) (8.21)

Here, zt is defined as follows : zt = Xwt + D−1
t (y − µt). This definition of zt along with

the update step expression from [8.21] indicate that at each time-step t, we are essentially
solving a (Weighted) Least Square Problem. This can be seen as follows :

8-10

Lecture 8 — September 28 Fall 2018

Let D
1
2
t be the square matrix (matrix of square root of diagonal entries) of Dt

Since Dt is diagonal, so is D
1
2
t . Thus, we have Dt = D>t , D

1
2
t =

(
D

1
2
t

)>
(8.22)

Let X̂ be the new design matrix defined as : X̂ = D
1
2
t X (8.23)

Let ŷ be the new design matrix defined as : ŷ = D
1
2
t zt (8.24)

Then, wt+1 =
(
X>DtX

)−1 (
X>Dtzt

)
⇐⇒ wt+1 =

(
X̂>X̂

)−1
X̂>ŷ

From previous equation and the Least Squares Estimation from previous class :

wt+1 = arg minw
∥∥∥ŷ− X̂w

∥∥∥2
= arg minw

∥∥∥D 1
2 (zt −Xw)

∥∥∥2
= arg minw

n∑
i=1

(
(zt)i − x>i w

)2

D−1
ii

Thus, wt+1 is the solution of the above weighted least squares problem. (8.25)
((zt)i−x>i w)2

D−1
ii

has the form of (yi−xi
>w)2

σ2 , which represents the Gaussian Noise Model

Thus, D−1
ii takes the form of Data-Dependent Noise. (8.26)

8.6 Logistic Regression for Big Data
Big Data and Constraints on Logistic Regression : The term Big Data often stands for
datasets with a large number of data points (large value of n), each element being a vector
in a high-dimensional space (large value of d). With big data, there are several constraints
on the methods used to model the dataset using logistic regression.

• We have seen that the second order Newton’s method incurs O (d3) time and O (d2)
space due to the computation of the inverse of the Hessian. In the case of big data,
d is a large number and thus, we cannot afford these order of computation. Thus, we
must resort to the first order methods.

• Now, we have also seen that the first order method of gradient descent has faster
iterations. However, the number of iterations till convergence is large. Thus, we need
to improve upon the gradient descent method.

• Batch Gradient Descent : We consider the so-called Batch Gradient Descent, the
update step of which is described as follows–

8-11

Lecture 8 — September 28 Fall 2018

Update : wt+1 = wt − γt
(

1
n

n∑
i=1
∇fi(wt)

)
,

where fi(wt) represents the gradient at the i−the input feature (8.27)

However, the computation of each iteration involves O (d) computations for gradients
of n features. Thus, the overall computations per iteration are O (n · d), which can not
be afforded. Thus, we can not use batch gradient descent for big data.

Thus, we resort to the use of the Stochastic Gradient Descent and its variants/extensions.
We discuss some of the representative methods in the following subsections.

Stochastic Gradient Descent [SGD] : The update step of SGD involves randomly picking
up an input feature it at iteration t and plugging in the gradient descent formula the gradient
for that feature. Formally, the update formula for SGD is given by :

Update : Randomly pick it at iteration/time-instance t
Evaluate the gradient ∇fit(wt) at the input feature indexed it
Update w as follows : wt+1 = wt − γ∇fit(wt) (8.28)

Now, this approach has cheaper complexity; O (d) computations are performed at each
iteration. However, the convergence of this method is very poor when compared against the
batch gradient descent. The method also has a very high variance. This can be intuitively
seen as follows. If there are certain inputs for which the gradient takes abnormally large
values, then the update step will sway w from its ideal update direction by huge amounts.
This is not good for the convergence, since such samples will easily mislead the updates.
To some extent, we can try to cater for the high variance by using Stochastic Mini-
Batch Gradient Descent. Here, instead of evaluating gradient at a single randomly
picked feature, we evaluate averaged gradient over a randomly selected batch of features
with indices B = {i1, . . . , ib}. The update step is described below :

Update : Randomly pick indices B = {i1, . . . , ib} at iteration t (8.29)
Evaluate the averaged gradient g = 1

b

∑b
j=1∇fij (wt) (8.30)

Update w as follows : wt+1 = wt − γ · g (8.31)

8-12

Lecture 8 — September 28 Fall 2018

The updates now incur O (b · d) computations per iteration and for appropriate choice of
b, we can afford these updates. Intuitively, averaging out of the gradients diminishes the
effects of abnormally large gradients on the update of w, which slightly improves (decreases)
the variance. Note that the convergence analysis of mini-batch SGD shows that there is no
advantage to use a mini-batch size bigger than 1 if the cost of a mini-batch step is b times the
cost for one gradient. The reason is that the variance decreases when b increases, yielding
a smaller total number iterations to reach a specific accuracy. However, this reduction of
number iterations is smaller than b and thus, if each step is b times more expansive, there
is no overall gain of using a mini-batch. The main computational reason to use mini-batch
is when one has access to Parallel Processing. With parallel processors, the computation
of the b gradients can be made almost as fast as that of only one gradient and this yields an
overall speed-up. Note that SGD is an example of a set of approaches called Incremental
Gradient Methods in optimization.
In the last 5 years, a set of methods called Variance Reduced Incremental Gradient
Methods were proposed to further speed-up these methods. Their idea is to reduce the
variance by using “memory”. We now present the first one of these (which was a big break-
through in the optimization literature2), Stochastic Averaged Gradient (SAG), and a small
tweak called SAGA:
Stochastic Averaged Gradient [SAG] and SAGA : The idea of SAG is to use the memory
of the previous computations to calculate the update term. The update is :

Update : wt+1 = wt − γ
1
n

n∑
i=1

vi (8.32)

Here, vi = ∇fi(wt) are called Memory variables. In every iteration, we update only one
of the memory variables vit = ∇fit(wt) for some randomly picked it. We keep all the
previously set vj memory variables unchanged and simply use their computed values from
previous iterations. This method of incrementally computing the approximated gradient
decreases the variance of the method considerably, and in particular, allows the use of a big
constant step-size like gradient descent which is why convergence is so much better than
SGD. A disadvantage of SAG was that in expectation over the random choice it, the update
direction is not equal to ∇f(wt) (it is Biased). Because of that, the convergence proof was
very complicated with tens of pages with numerically found quantities.
The SAGA method is a small change on SAG to make the update direction Unbiased,
significantly simplifying its convergence proofs (a few lines!). The update step for SAGA is:

2The paper Minimizing Finite Sums with the Stochastic Average Gradient won the Lagrange
prize in mathematical programming.

8-13

https://arxiv.org/abs/1309.2388

Lecture 8 — September 28 Fall 2018

Update : wt+1 = wt − γ(∇fit(wt) + 1
n

n∑
i=1

vi − vit︸ ︷︷ ︸
Variance Reducing

Correction

) (8.33)

One can see that the variance reducing correction term is zero in expectation over it, thus
yielding an unbiased update direction ∇f(wt) in expectation. SAGA is now the default
method for optimizing logistic regression in Scikit-learn library3. The figure [8.4] summa-
rizes the characteristics of the methods discussed above.

Figure 8.4: A comparison of the Batch Gradient (FG method, deterministic), Stochastic
Gradient method (SG method, stochastic) and SAG/SAGA (hybrid) methods. The FG
method converges faster, but each update is costly. The SG method has cheap updates, but
it converges slowly. The hybrid methods are the best of both worlds; these methods achieve
a faster convergence with cheap updates.

To go further : The above notes were just a quick introduction on the topic. These methods
are covered in greater details in the class IFT6132 - Advanced Structured Prediction
and Optimization.

3Scikit-learn is one of the standard libraries for python-based machine learning. For more information on
SAGA, please refer to the original NIPS 2014 Paper: SAGA: A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Objectives.

8-14

http://www.iro.umontreal.ca/~slacoste/teaching/ift6132/W18/
http://www.iro.umontreal.ca/~slacoste/teaching/ift6132/W18/
http://scikit-learn.org
https://arxiv.org/abs/1407.0202

	Logistic Regression
	Sigmoid Function and Properties
	Maximum Conditional Likelihood
	Numerical Optimization
	IRLS : Iterative Reweighted Least Square
	Logistic Regression for Big Data

