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Disclaimer: These notes have only been lightly proofread.

9.1 (Fisher) Linear Discriminant Analysis
Let us consider the problem of binary classification! In the last class, we considered Logistic
Regression, which is a discriminative (conditional) approach to binary classification. In
this class, we consider Linear Discriminant Analysis1 (LDA), which is a Generative
approach to binary classification. Recall that a conditional approach models only the predic-
tive distribution p (Y | X) of labels given the input data. On the other hand, the generative
approach of LDA models the input data as well. Specifically, LDA models the entire dataset
distribution p(X, Y ) through Gaussian Class-Conditional Distributions p (X | Y ) and
Bernoulli Prior Distribution p (Y ). The parameters involved in this modeling can be eas-
ily learned from a training dataset using closed-form Maximum Likelihood Estimates.
Having learned the parameters, predictions can be easily made for test dataset through pre-
dictive distribution p (Y | X). In the following sections, we will consider the LDA approach
in detail. However, we begin with a brief introduction to Vector/Matrix Calculus followed
by the Plate Notation and the Graphical Representation of Probabilistic Approaches.

9.2 Vector and Matrix Calculus
9.2.1 Motivation
Recall that the definition of the derivative of a real-valued function of a real-valued variable
can be given as follows :

A function f : R → R is said to be differentiable at x0 ∈ R

⇐⇒ limh→0
f(x + h) − f(x)

h
exists (and has a finite value). (9.1)

The value of the limit limh→0
f(x+h)−f(x)

h
is often denoted by f ′(x0) and is called the Deriva-

tive of f at x0. The notion of derivative of a function is extremely useful for modeling
its rate of change, points of extrema, linear approximation etc. Thus, we want to extend

1Note that Linear Discriminative Analysis generalizes the Fisher’s Linear Discriminant method,
which uses a linear combination of features for data classification. For simplicity, we will denote the (Fisher)
Linear Discriminative Analysis by LDA throughout the notes.
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this notion to a broader class of functions. Specifically, we want to define the derivative of
vector/matrix valued functions of vector/matrix argument.
It is clear from [9.1] that the same definition can not be used directly for generalization
because it involves the limit of a fraction. For vectors and matrices, the notion of fraction
and division is not always well-defined. However, we can rewrite [9.1] as follows :

limh→0
f(x + h) − f(x)

h
= f ′(x0) is equivalent to: f(x + h) − f(x) = f ′(x0) · h + e(h),

where e(h) is an error function that satisfies limh→0
e(h)

h
= 0 (9.2)

This form of the definition of derivative is easier to generalize to the desired broader category
of functions. It involves writing the change in the value of the function f as the sum of a
linear operator2 f ′(x0) acting on the change h in the argument of the function and an error
function e(h). Note that the linear operator f ′(x0) is defined entirely in terms of x0 and
it acts on the change h in the argument. Also, as h → 0, the error function must satisfy
limh→0

e(h)
h

. With these observations, we can generalize the definition of derivative.

9.2.2 Generalizing Differentiability
We first consider the vector-valued functions of vectors.

Definition [Differentiability] : Consider function f such that f : Rm → Rn.
f is Differentiable at x0 ∈ Rm ⇐⇒ ∃ a Linear Operator dfx0 : Rm → Rn

such that ∀ ∆ ∈ Rm, f(x0 + ∆) − f(x0) = dfx0 (∆) + o (∥∆∥) (9.3)

Here, o (∥∆∥) represents Error Function h(∥∆∥) such that lim∥∆∥→0
h(∥∆∥)

∥∆∥ = 0.
The term o (∥∆∥) is usually called and is read as the “little oh” of ∆.

The linear operator dfx0 is called the Differential of f at x0.
The differential is a linear operator

⇐⇒ dfx0 (∆1 + b · ∆2) = dfx0 (∆1) + b · dfx0 (∆2) ∀ ∆1, ∆2 ∈ Rm, ∀ b ∈ R

Remark : The differential operator dfx0 can be thought of as a “machine” or a “processor”
which inputs vectors from Rm, processes them and generates an output vector in Rn. It
should be noted that this operator is entirely defined in terms of x0 and it should be linear.

2An operator can be thought of as a “machine” that inputs a variable from the domain space, processes
it and yields an output in the target space. We will briefly consider the exact meaning of an operator in the
next subsection. However, we will describe the form of these operators for the specific cases of interest.
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Remark : In the case of f : Rm → Rn, the differential dfx0 takes the form of a matrix with
order n × m and the operation dfx0 becomes the matrix multiplication of dfx0 and ∆. The
details are as given below :

If f : Rm → Rn, then dfx0 ∈ Rn×m and dfx0 (∆) = dfx0 · ∆ (∀ ∆ ∈ Rm)
The differential represented as a matrix of order n × m is called the Jacobian Matrix.

Let (dfx0)i,j denote the (i, j)−th component of dfx0 . Then, (dfx0)i,j = ∂fi

∂xj

∣∣∣
x0

(9.4)

where fi is i−th component of f and xj is j−th component of x (1 ≤ i ≤ n, 1 ≤ j ≤ m).

Remark : This definition of differentiability (and of differential) from [9.3] gives a way to
define the derivatives not only for the cases of vectors but also for matrices and tensors. It is
easy to see that exactly the same definition will continue to hold for the more general cases
of matrices and tensors. However, one needs to be careful about the form of the differential!
Remark : Another important case to consider is that of real-valued functions of square
matrices. It is important as it is required a lot for MLE and MAP estimations corresponding
to Gaussian distributions. In the case of f : Rn×n → R, the differential dfx0 takes the
form of a matrix with order n × n and the operation dfx0 becomes the Trace of matrix
multiplication of dfx0 and ∆. The details are as given below :

If f : Rn×n → R, then dfx0 ∈ Rn×n and dfx0 (∆) = tr
(
dfx0

⊤∆
)

(∀ ∆ ∈ Rn×n)

9.2.3 Chain Rule
One of the most important and frequently used formula for evaluation of differentials of
composition of function is the Chain Rule. It expresses the differential of the composition
of functions in terms of the differentials of the individual functions as follows :

Let f : Rm → Rn and g : Rn → Rq. Then, d(g ◦ f)x0
= dgf(x0) · dfx0 (9.5)

The term dgf(x0) · dfx0 is the product of the Jacobians dgf(x0) ∈ Rq×n and dfx0 ∈ Rn×m.

Remark : It is easy to extend the chain rule to composition of more than two functions
(Exercise!). Also, note that the resultant product of Jacobians will always be well-defined.
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9.2.4 Important Examples
In this subsection, we consider some examples that not only help demonstrate the use of the
definition from [9.3] in order to calculate the differentials of certain important functions, but
build the required tool-kit for the analysis of LDA in the subsequent sections!

Differential of Squared Mahalanobis Distance : Let f : Rd → Rd such that ∀ x ∈ Rd,
we have : f(x) = x − µ, where µ is a constant vector in Rd. Now, in order to evaluate the
differential of f at x, consider the following manipulations for any h ∈ Rd :

f(x + h) − (x) = ((x + h) − µ) − (x − µ) = h = Id×d · h + 0
where 0 is the d−dimensional zero vector. Clearly, lim∥h∥→0

0
∥h∥ = 0.

Thus, by definition, we have dfx = Id×d ∀ x ∈ Rd (9.6)
where Id×d is the d−dimensional identity matrix.

Now, consider g : Rd → R such that ∀ x ∈ Rd, we have : g(x) = x⊤Ax, where A ∈ Rd×d is a
fixed matrix of order d × d. Now, in order to find the differential of g at x, we consider the
following manipulations for any h ∈ Rd :

g(x + h) − g(x) = (x + h)⊤A(x + h) − x⊤Ax =
(
x⊤Ah + h⊤Ax

)
+ h⊤Ah

Now, h⊤Ax ∈ R ⇒
(
h⊤Ax

)⊤
= x⊤A⊤h. Also, x⊤Ah ∈ R.

⇒ g(x + h) − g(x) = x⊤
(
A + A⊤

)
h + h⊤Ah

Now, it is easy to prove that lim∥h∥→0
h⊤Ah
∥h∥

= 0. (Try this as an Exercise!

Thus, by definition, we have dgx = x⊤
(
A + A⊤

)
∀ x ∈ Rd (9.7)

Now, we consider the matrix A to be the inverse of Covariance Matrix Σ of some Gaus-
sian Distribution N (µ, Σ), with µ ∈ Rd, Σ ∈ Rd×d. Then, the Squared Mahalanobis
Distance3 with respect to the given Gaussian Distribution, denoted by ℓ : Rd → R, is
defined as follows :

ℓµ,Σ(x) = (x − µ)⊤ Σ−1 (x − µ) ∀ x ∈ Rd (9.8)
Note that the term ℓµ,Σ(x) appears in the log-likelihood expressions involving Gaussian
distributions and hence, we need to evaluate its differential in order to solve for MLE, MAP
estimates! Consider the following manipulations for getting the required differential :

3For extra information, please refer to the Wikipedia page on [Mahalanobis Distance].
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Define ℓ : Rd → R such that ℓ(x) = (x − µ)⊤ A (x − µ) ∀ x ∈ Rd

∀ x ∈ Rd, we have : ℓ(x) = (g ◦ f) (x) where, ◦ denotes function composition.
Here, f and g are the functions defined above.

Thus, the differential for ℓ can be computed using the chain rule as follows :
dℓx = dgf(x) · dfx =

(
(x − µ)⊤

(
A + A⊤

))
· Id×d

Now, since Σ−1 is symmetric, we have Σ−1 = (Σ−1)⊤. Thus, we get :

dℓx = (x − µ)⊤
(
A + A⊤

)
and d(ℓµ,Σ)x = 2 (x − µ)⊤ Σ−1 (9.9)

Remark : In any calculation of differential, we must ensure that the error function (denoted
by h(∥∆∥)) tends to 0 strictly faster than ∥∆∥. In almost all our cases, we will deal with
vector, matrix (or tensor) values of ∆. Thus, by default, we will consider ∥∆∥ to be the
Frobenius Norm4 of ∆. For any matrix (including a vector), it is defined as follows :

The Frobenius norm of a vector or a matrix T is denoted by ∥T∥F .

Frobenius norm of vector v ∈ Rd is defined as : ∥v∥F =
√∑d

i=1 |vi|2

Frobenius norm of matrix M ∈ Rn×m is defined as : ∥M∥F =
√∑n

i=1
∑m

j=1 |Mi,j|2
(9.10)

Differential of Determinant of a Square Matrix : Another important function that
appears whenever we consider the log-likelihood involving Gaussian Distributions is the
logarithm of the determinant of the covariance matrix. Thus, it is important to consider the
differential of the log-determinant of a matrix.
Let function f : Rd×d → R be defined as : f(A) = log |A| ∀ A ∈ Rd×d. Consider any
matrix ∆ ∈ Rd×d. Then, f(A + ∆) − f(A) = log |A + ∆| − log |A|. For simplicity, we restrict
our proof to symmetric matrix A ∈ Rd×d that is strictly positive definite i.e. A ≻ 0. This
implies that A is invertible and that its matrix square roots exists (by the spectral theorem):
i.e. ∃ B ∈ Rd×d such that B · B = A. We denote B by A

1
2 and call it Square Root

of Matrix5 A. Note that we can always find the square root for a real-valued symmetric
matrix and hence, our proof will work for the cases when A equals the covariance matrix of a
Gaussian distribution or its inverse. Now, for a matrix M ∈ Rd×d, let λi (M) (i ∈ {1, . . . , d})
denote the d eigenvalues of M , in decreasing order, with multiplicity counted. Then, we will

4For extra information on Frobenius Norm, please refer to the Wikipedia pages on [Matrix Norm] and
[Frobenius Inner Product].

5For more information on the Square Roots of Matrices, their existence and construction, please refer to
the Wikipedia page on [Square Root of a Matrix].
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use the following standard linear algebra properties in our derivation :

For matrices B, C ∈ Rd×d, we have : |B · C| = |B| · |C|.
For matrix M ∈ Rd×d that is diagonalizable, we have : tr (M) = ∑d

i=1 λi(M) and |M | = ∏d
i=1 λi(M).

For any matrices B, C, D ∈ Rd×d, we have : tr (B · C · D) = tr (D · B · C).
For matrix M ∈ Rd×d, we have : M → 0 ⇒ λi(M) → 0 ∀ i ∈ {1, . . . , d}.
For x ∈ R, |x| < 1 ⇒ log(1 + x) = x − x2

2 + x3

3 − . . . = ∑∞
i=1(−1)i+1 xi

i

(9.11)
Now, we consider the derivation to obtain the differential of log-determinant of f :

log |A + ∆| − log |A| = log
∣∣∣A 1

2
(
I + A− 1

2 ∆A− 1
2
)

A
1
2
∣∣∣ − log

∣∣∣A 1
2 A

1
2
∣∣∣

= log
(∣∣∣A 1

2
∣∣∣ ∣∣∣I + A− 1

2 ∆A− 1
2
∣∣∣ ∣∣∣A 1

2
∣∣∣) − log

(∣∣∣A 1
2
∣∣∣ ∣∣∣A 1

2
∣∣∣)

= log
∣∣∣I + A− 1

2 ∆A− 1
2
∣∣∣ = log

(∏d

i=1 λi

(
I + A− 1

2 ∆A− 1
2
))

=
∑d

i=1 log
(
λi

(
I + A− 1

2 ∆A− 1
2
))

=
∑d

i=1 log
(
1 + λi

(
A− 1

2 ∆A− 1
2
))

=
∑d

i=1 λi

(
A− 1

2 ∆A− 1
2
)

+
∑∞

k=2

∑d

i=1 (−1)k+1 λk
i

(
A− 1

2 ∆A− 1
2
)

k

=
∑d

i=1 λi

(
A− 1

2 ∆A− 1
2
)

+ o (∥∆∥) = tr
(
A− 1

2 ∆A− 1
2
)

+ o (∥∆∥)

= tr
(
A− 1

2 A− 1
2 ∆

)
+ o (∥∆∥) = tr

(
A−1∆

)
+ o (∥∆∥)

Thus, by definition, the differential of log-determinant of A is A−1.
Using the standard notation, we have : d log|A|

dA
= A−1 (9.12)

Remark [Optional] : The proof above has a small jump! After expanding the terms of
log(1 + λi(M)), we get an error function e(∥∆∥) in terms of λk

i (M), where M = A− 1
2 ∆A− 1

2

and k > 1. We need to prove that lim∥∆∥→0
e(∥∆∥)

∥∆∥ = 0. We can prove this as follows :

Observe that λk
i are eigenvalues of Mk. Thus, ∑d

i=1 λk
i = tr

(
Mk

)
= tr

((
A− 1

2 ∆A− 1
2
)k

)
.

Now, for any square matrix B ∈ Rd×d, |tr (B)| =
∣∣∣∑d

i=1 Bi,i

∣∣∣ ≤ ∑d
i=1 |Bi,i| ≤

√
d

√∑d
i=1 B2

i,i ≤√
d∥B∥F . The second-last inequality follows from the Root-Mean-Squares Inequality6.

For matrices B, C ∈ Rd×d, Cauchy-Schwarz Inequality gives : ∥B · C∥F ≤ ∥B∥F · ∥C∥F .
6The so-called Root-Mean-Squares Inequality forms a special case of a broad category of important in-

equalities involving the Generalized Mean. A concise reference for these inequalities can be found at the
Wikipedia page on [Generalized Means Inequality]
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∴ 0 ≤
∣∣∣∑d

i=1 λk
i

∣∣∣ =
∣∣∣∣tr (

A− 1
2 ∆A− 1

2
)k

∣∣∣∣ ≤
√

d

∥∥∥∥(
A− 1

2 ∆A− 1
2
)k

∥∥∥∥
F

≤
√

d
∥∥∥A− 1

2

∥∥∥k

F
· ∥∆∥k

F ·
∥∥∥A− 1

2

∥∥∥k

F
.

This gives us the required limit for every k > 1 by using Squeeze Theorem of limits. We
have : 0 ≤

∣∣∣∑d
i=1 λk

i

∣∣∣ ≤
√

d
∥∥∥A− 1

2

∥∥∥k

F
· ∥∆∥k

F ·
∥∥∥A− 1

2

∥∥∥k

F
. Since k > 1 from the derivation, we

have :

0 ≤ lim∥∆∥F →0

∣∣∣∑d

i=1 λk
i

∣∣∣
∥∆∥F

≤ lim∥∆∥F →0
√

d
∥∥∥A− 1

2

∥∥∥k

F
· ∥∆∥k−1

F ·
∥∥∥A− 1

2

∥∥∥k

F
= 0. Thus, we get

lim∥∆∥F →0
∑k

i=1
λk

i

∥∆∥F
= 0 ∀ k > 1. This completes the proof that the error function indeed

tends to zero strictly faster than ∥∆∥ and we can simply replace the ugly expression of the
error function by o (∥∆∥).

References : For details related to matrix calculus, please refer to the book [Matrix Dif-
ferential Calculus with Applications in Statistics and Econometrics] by Neudecker
and Magnus7.

9.3 Plate Notation and Graphical Representation
9.3.1 Motivation
Before we begin with the analysis of LDA, let us take a look at the method for Graphical
Representation of probabilistic approaches and the so-called Plate Notation8. Here, our
aim is to represent any probabilistic approach in a graphical format so that it is easy to
visualize (“A picture is worth a thousand words!”). In any probabilistic model, we want
to model the uncertainty in some of random variables/vectors and parameters, and then
learn the corresponding underlying distributions. We assume that the rest of the random
variables/vectors and parameters are fully known and hence, we do not want to model
uncertainty in these variables. In our graphical model, we need rules to represent these
different sets of variables clearly. Further, the dependencies between various random variables
and parameters under consideration should be clearly represented. In addition, it might
happen that the scenario has a huge number of random variables or parameters that need to
be considered (e.g, dataset with N = 1M samples). Then, we need to represent the repeated
variables in our diagram in a concise as well as precise manner. Towards this, we consider
the following set of rules to define our graphical representation method9.

7Note that there are multiple conventions for setting the dimensions of the derivatives and it is imperative
that we stick to one particular convention in order to get consistent results. The definition from [9.3] results
in the answers that abide the so-called Numerator Layout. In this context, a good reference point for
checking the final answers for expressions of derivatives is the Wikipedia page for [Matrix Calculus].

8For more information, please refer to the Wikipedia page on [Plate Notation].
9Note that the rules for graphical representation for probabilistic models vary a lot from different sources.

The Wikipedia reference on [Plate Notation] gives one of such sets of rules for graphical representation.
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9.3.2 Rules for Graphical Representation and Plate Notation
1. Random variables and parameters for which we want to model the uncertainty are

represented by circular nodes with the variable names.
2. Random variables and parameters that are assumed to be known and for which we do

not model the uncertainty are represented by square blocks with the variable names.
3. The dependencies in between various random variables and parameters are represented

using directed arrows.
4. If a random variable is observed, then the circular node corresponding to it is shaded.

If it is not observed, then the circular node corresponding to it is not shaded.
Note that the rules above help fix a convention for graphical representation of probabilistic
approaches. However, we need to cater for cases where variables repeat. The so-called Plate
Notation help fix conventions for concisely representing the repeated variables in a model.

1. We use a rectangle (also called a Plate) to group together inside it all the random
variables and parameters that repeat together.

2. Each of the variables in a plate is indexed and the range of the index is mentioned on
the plate. In order to expand the representation, we repeated the contents of the plate.

3. Arrows that cross the plate represent one directed arrow per repetition of the plate.
The Figure [9.1] illustrates these rules with the help of an example.

ϕ

Xi

Zi

i = 1, . . . , N

ϕ

Xi

Zi

X1

Z1

XN

ZN

. . . . . .≡

Figure 9.1: An example of a graphical representation involving the plate notation. Note that
the parameter ϕ is assumed to be known and the uncertainty in it is not modeled. There
are N random variables Zi, Xi (i∈{1, . . . , N}) for which we want to model uncertainty. Xi

is dependent only on Zi. The random variables Zi is dependent on parameter ϕ. The only
observed variables are Xi; Zi are not observed. Note that the figure to the left represents this
model concisely using the rules of graphical representation and plate notation. An equivalent
expanded graphical representation is shown on the right.
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9.4 Analysis of Fisher LDA
9.4.1 Formulation
We now consider the analysis of the generative (Fisher) linear discriminant analysis (LDA)
model for binary classification. Let X denote the random vector corresponding to the input
data such that X ∈ Rd. Let Y denote the random variable corresponding to the binary
label of input X. We represent the two labels by 0, 1 and thus, Y ∈ {0, 1}. We model
the input data by modeling the entire dataset p(X, Y ) in terms of Class-Conditional
Distributions p(X | Y ) and Prior Distribution P (Y ). Now, we assume the following
forms of distributions for p(X | Y ) and p(Y ) :

Y ∼ Bernoulli (π) for some π ∈ [0, 1] ⇒ p (y | π) = πy(1 − π)1−y ∀ y ∈ {0, 1}
(9.13)

X | Y = j ∼ N
(
µj, Σ

)
⇒ p (x | y = j) = 1

√
2π

d
√

|Σ|
e− 1

2(x−µj)⊤
Σ−1(x−µj)

Here, µj ∈ Rd is the mean of the j−th class ∀ j ∈ {0, 1} and x∈Rd and
Σ represents the covariance matrix with Σ ∈ Rd×d.

Notice that LDA assumes that the covariance matrix Σ is the same for both classes.

× × ×
×

×××
×××

×
××

×
×× ××××

×××× ××
× ×× ××

××××
×

××××

µ1

µ0

Class 0

Class 1

Figure 9.2: The schematics of a scenario which can be best modeled by LDA. Note that the
two class-conditional distributions have different means but the same covariance matrix.

Now, let D =
{(

x(i), y(i)
)

| x(i) ∈ Rd and y(i) ∈ {0, 1} , ∀ i ∈ {1, . . . , n}
}

be the input dataset.
Then, the problem of modeling the dataset becomes the problem of estimating the parame-
ters θ = (π, µ0, µ1, Σ) that define the class conditional and prior distributions. We will use
joint Maximum Likelihood Estimation to estimate these desired parameters (exercise
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in homework 2). As shown in the previous lecture with the general exponential family, one
can show that p(y|x; θ) = σ(w⊤ϕ(x)) where σ(·) is the sigmoid function and the parameter
w can be expressed as a function of the parameters (π, µ0, µ1, Σ). Here ϕ(x) = (x, 1), and
thus the decision boundary is linear. If instead we model each class with different covariance
matrices Σ0 and Σ1, then one can show that ϕ(x) is a quadratic function of x and one obtains
quadratic discriminant analysis (QDA) – see homework 2.

Remark : The graphical representation for LDA can be given as done in Figure [9.3],
where θ = (π, µ0, µ1, Σ). (As an exercise, try to find graphical representations for Linear
and Logistic Regression approaches!)

π θ

Yi Xi

i = 1, . . . , n

Figure 9.3: The graphical representation of LDA using plate notation.

9.5 Unsupervised Learning
9.5.1 Two Views for Unlabeled Data
Till now, we have consider the scenarios for modeling datasets of input data points and the
corresponding labels. However, there are numerous real-life problem settings where we do not
have access to the labels corresponding to data. Thus, without any labels, we want to model
the data. There are two ways to consider the unlabeled data : i. Mixture Distribution
Approach and ii. Latent Variable Approach.

In order to understand these approaches better, consider the example of unlabeled data in
Figure [9.4]. The given data can be viewed as a mixture of several component distributions.
For instance, the data distribution in the figure can be viewed as a mixture of two Gaussian
distribution. However, we can easily visualize the data to be coming from two groups, or
Clusters, such that the points from the same cluster are very similar to one another and
those from different are different from one another. Thus, we can understand the structure
in the data in a better manner by trying to model these clusters. However, since the cluster
assignment of data points are not available in the unsupervised problem, we call the clusters
Latent Variables and aim to learn the latent variables from the available data. The
difference in the two approaches can also be seen from their plate diagrams, which are given
in Figure [9.5]. In this scribe, we will only consider the latent variable approach.
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Figure 9.4: There are two views of unlabeled data. We can view it as a mixture distribution
or consider the data in terms of latent variables. In the example, it appears as though the
data is coming from two different “groups” or “clusters” and hence, we can aim at finding
the characteristics of these structures in order to learn the underlying structure.

Xi

Xi

Zi

i = 1, . . . , n

i = 1, . . . , n

Figure 9.5: Graphical Models for mixture distribution approach (on the left) and latent
variable approach (on the right). Here Xi represents the unlabeled data and Zi represents
the assumed latent variables for the corresponding data point Xi.

9.6 K-Means Algorithm
9.6.1 Motivation
Let us consider the problem of clustering the given unlabeled data. We want to learn
a Cluster Assignment Function that predicts the cluster to which each data point is
mapped. We assume that there are K clusters in the data, which are labeled {1, . . . , K}.
We represent each of the clusters i (i ∈ {1, . . . , K}) by its representative Cluster Center µi.
The idea is that the data points that belong to a particular cluster center should not differ
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too much from the corresponding cluster center. We measure this extent of difference using a
Distortion Function, which is defined in terms of a chosen Distance Function. Since we
do not have any information about the cluster centers, we initialize them randomly. Then,
we perform an iterative algorithm starting with a guess of the cluster assignment function
which maps each data point to some cluster center. Then, we update the cluster centers so
that the distortion measure is minimized. Intuitively, this step makes our guess of cluster
centers better. However, now with the better guess for cluster centers, we can get a better
cluster assignment function! Thus, we repeat these two steps to decrease the distortion
function until we converge to the best cluster centers and cluster assignment function.

9.6.2 Formulation
We will use the following notations: xi ∈ Rp, i ∈ {1, . . . , n} are the observations we want to
partition. µk ∈ Rp, k ∈ {1, . . . , K} are the means where µk is the center of the cluster k. We
will denote µ the associated matrix. zi,k are indicator variables associated to xi such that
zi,k = 1 iff xi belongs to the cluster k, zi,k otherwise. z is the matrix which components are
equal to zi,k.

Distortion Function : we define the distortion J(µ, z) by: J(µ, z) = ∑n
i=1

∑K
k=1 zi,k∥xi − µk∥2

2

Algorithm : The aim of the algorithm is to minimize J(µ, z). To do so we proceed with
Alternating Minimization or Block Coordinate Minimization :

• Initialize cluster centers µ.

• we minimize J with respect to z : zi,k = 1 if ∥xi − µk∥2 = mins ∥xi − µs∥2, in other
words we associate to xi the nearest center µk.

• we minimize J with respect to µ : µk =
∑

i
zi,kxi∑
i

zi,k
.

• we come back to step 1 until convergence.

Remark : The step of minimization with respect to z is equivalent to allocating the xi in
the Voronoi cells which centers are the µk.
Remark : During the step of minimization with respect to µ, µk is obtained by setting to
zero the k−th coordinate of the gradient of J with respect to µ. Indeed we can easily see
that : ∇µk

J = −2 ∑
i zi,k(xi − µk)

9.6.3 Properties of k−means
• It converges in finite number of iterations to a local minimum. However, it is just a

local min. In general, it is NP-hard to find the best cluster assignment. In general
implies that there are cases which require time exponential in input size. There are
certain cases where we get there is very easy solutions.
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• It is very fast and requires lesser number of iterations.

• Initialization is very important for k−means. There is an algorithm k−means++,
which gives a clever initialization scheme that guarantees that objective is within log k
of the global optimum with high probability (w.h.p.). (There is a theoretical guaran-
tee). Spread out the initial mean points as much as possible. This avoids the wrong
clustering (image in class). We select new means as per the inverse of their distance
from previous means.

• Choice of K : One of the heuristics is–

J(µ, z, K) =
n∑

i=1

K∑
j=1

zi,j

∥∥∥xi − µj

∥∥∥2
+ λ · K︸ ︷︷ ︸

Regularization Term

(9.14)

λ is the hyperparameter. We need to experiment with λ to fix its value. (Later in the
class, we will see Non-Parameteric Models, where K is basically infinite and we can
get p(K | data). An example is Dirichlet Process Mixture Model). λ has an effect on
the optimal value of K.

• K−means is very sensitive to the distance measure used. When we are using L2, we
are getting spherical clusters. Also, the choice of clustering depends on the problem
itself. The different objectives will have different best choices of clustering, which will
be decided by different distance measures. (Figure in class). The “bad clustering” is
actually a “good clustering” for the mail-box problem. The “problem” in the previous
figure is fixed by Gaussian Mixture Model.

• Convergence and Initialization : We can show that this algorithm converges in a
finite number of iterations. Therefore the convergence could be local, thus it introduces
the problem of initialization. A classic method is use of random restarts. It consists
in choosing several random vectors µ, computing the algorithm for each case and
finally keeping the partition which minimizes the distortion. Thus we hope that at
least one of the local minimum is close enough to a global minimum. One other well
known method is the K-means++ algorithm, which aims at correcting a major theoretic
shortcomings of the K-means algorithm : the approximation found can be arbitrarily
bad with respect to the objective function compared to the optimal clustering. The K-
means++ algorithm addresses this obstacles by specifying a procedure to initialize the
cluster centers before proceeding with the standard K-means optimization iterations.
With the K-means ++ initialization, the algorithm is guaranteed to find a solution
that is O (log K) competitive to the optimal K-means solution. The intuition behind
this approach is that it is a clever thing to well spread out the K initial cluster centers.
At each iteration of the algorithm we will build a new center. We will repeat the
algorithm until we have K centers. Here are the steps of the algorithm :

– First initiate the algorithm by choosing the first center uniformly at random
among the data points.
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– For each data point xi of your data set, compute the distance between xi and
the nearest center that has already been chosen. We denote this distance Dµt(xi)
where µt is specified to recall that we are minimizing over the current chosen
centers.

– Choose one new data point at random as a new center, but now using a weighted
probability distribution where a point xi is chosen with probability proportional
to Dµt(xi)2.

– Repeat Step 1 and Step 2 until K centers have been chosen.

We see that we have now built K vectors with respect to our first intuition which was
to well spread out the centers (because we used a well chosen weighted probability).
We can now use those vectors as the initialization of our standard K-means algorithm.
More details can be found on the K-means++ algorithm in [A]. [A] Arthur, D. and
Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
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