
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 11 — October 12
Lecturer: Simon Lacoste-Julien Scribe: Martin Weiss, Eeshan Gunesh Dhekane

Disclaimer: These notes have only been lightly proofread.

11.1 Graph Theory review
11.1.1 Directed Graph
Definition 11.1 A Directed Graph G consists of a set of Nodes or Vertices V =
{1, . . . , n} and a set of Edges E such that E ⊆ V × V , i.e, E is a set of ordered pairs of
distinct vertices : E = {(i, j) | i, j ∈ V, i 6= j}.
We will only consider graphs that do not have a self-loops, i.e., (i, i) 6∈ E ∀ i ∈ V .
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Figure 11.1: Directed graph G with V = {1, . . . , 5} and E = {(1, 2), (2, 4), (1, 3), (3, 4), (3, 5)}

Definition 11.2 A Directed Path from vertex i to vertex j of directed graph G consists of
an ordered sequence of vertices (i, v1, . . . , vk, j), where k ≥ 0, such that (i, v1), (v1, v2), . . . , (vk−1, vk),
and (vk, j) ∈ E. We denote this directed path from i to j by a squiggly arrow i j.

Equivalently, a directed path can also be viewed as sequence of edges mentioned above. The
same path can be represented as ordered sequence of edges : ((i, v1), (v1, v2), . . . , (vk−1, vk),
(vk, j)). The example given below shows a directed path P from 1 to 4 (Figure [11.2]).

Definition 11.3 The set of Parents of a vertex i, denoted by πi, is the set of vertices of
G from which there is an edge to i, i.e., πi = {j | j ∈ V, (j, i) ∈ E}. Analogously, the set
of Children of a vertex k, denoted by ch(k), is the set of vertices of G to which there is an
edge from k, i.e., ch(k) = {` | ` ∈ V, (k, `) ∈ E}.

Figure [11.3] below shows the parent of 2, which is 1 and the children of 3, which are 4, 5.
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Figure 11.2: A directed path P from 1 to 4 with vertices 1, 3, 4 and edges (1, 3), (3, 4).
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Figure 11.3: 1 is the parent of 2 and 4, 5 are children of 3.

11.1.2 Undirected Graph
Definition 11.4 An Undirected Graph G consists of a set of Nodes or Vertices V =
{1, . . . , n} and a set of Edges E such that E is set of 2−sets of V without any self-loops,
i.e., E = {{i, j} | i, j ∈ V, i 6= j}.

Thus, the edge {i, j} is identical to the edge {j, i}. Since there are no self-loops, for any
edge e = {i, j} ∈ E, we have |e| = 2. The Figure [11.4] shows an example of an undirected
graph.
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Figure 11.4: Undirected graph G, V = {1, . . . , 5}, E = {{1, 2}, {2, 4}, {1, 3}, {3, 4}, {3, 5}}

Definition 11.5 An undirected Path from vertex i to vertex j of directed path G consists
of an ordered sequence of vertices (i, v1, . . . , vk, j), where k ≥ 0, such that {i, v1}, {v1, v2}, . . .,
{vk−1, vk}, and {vk, j} ∈ E.

Equivalently, an undirected path can also be viewed as sequence of edges mentioned above.
The example given below shows a directed path P from 2 to 3 (Figure [11.5]).
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Figure 11.5: Undirected path P from 2 to 3.

Definition 11.6 The set of Neighbors of a vertex i, denoted by N(i), is the set of vertices
that are connected with i through an edge, i.e., N(i) = {j | {i, j} ∈ E}.

For an undirected graph, the neighbors replace the notions of sets of parent and children.
Figure [11.6] shows the neighbors of vertex 4.
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Figure 11.6: Vertex 4 with its neighbors 2, 3.

11.1.3 Directed Acyclic Graph
Definition 11.7 A Cycle in a (directed/undirected) graph G consists of an ordered sequence
of nodes v1, . . . , vk, v1 such that v1 6= vk, there exists an (directed/undirected) edge from vi to
vi+1 ∀i ∈ {1, . . . , k− 1}, there exists an (directed/undirected) edge from vk to v1 and vi 6= vj
for i 6= j.

Equivalently, there exists a (directed/undirected) path in G from v to v for some vertex v.
In the examples of directed and undirected graphs above, there is no cycle in the directed
graph. However, there is a cycle in the undirected graph (namely, 1− 3− 4− 2−).

Definition 11.8 A directed graph with no cycles is called a Directed Acyclic Graph.

Note that the directed graph considered in [11.1] is indeed a directed acyclic graph (DAG).

Definition 11.9 An ordering I : V → {1, . . . , n} on the vertex set V = {1, . . . , n} of a
directed graph G is said to be Topological for G if and only if: 1) I is bijective and 2)
a ∈ πb implies that I(a) < I(b).
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What this deinition implies is that if we order (in the increasing manner) the vertices based
on the topological ordering, we will always have the parent of any node appearing before
the node itself (and all the directed arrows would “point to the right”, leaving no “back
edges”). Observe that for the DAG from Figure [11.1], the ordering of the vertices is already
a topological ordering, which is displayed in Figure [11.7].

1 2 3 4 5

Figure 11.7: Example of Topological Ordering on DAG from Figure [11.1].

Theorem 11.10 (Characterization of DAGs using Topological Ordering) A directed
graph G is a DAG ⇐⇒ G has a topological ordering.

Proof
(⇒) If G is given to be a DAG, perform Depth-First Search algorithm on it. Number in
descending order the nodes for which we run out of children while performing the DFS.
Because there is no cycle, you will always find nodes with no children during this algorithm
and thus this generate a topological ordering (in O(|V |+ |E|) time).
(⇐) (trivial) If there is a topological ordering of G, then G can not have any back edges and
hence, it can not have any cycles. Thus, G is a DAG.

11.2 Notation for Graphical Models
• Given n random variables X1, . . . , Xn. We assume that Xi are discrete random vari-

ables for simplicity for this part of the class. This is because defining conditional
distribution on continuous random variables is challenging. (Please refer to [Borel-
Kolmogorov Paradox] to see the challenges in defining conditional distributions.)

• Given a graph G = (V,E) such that V = {1, . . . , n}. We associate one random variable
per node of G and letting random variable Xi associate with node i.

• For any subset A ⊆ V of vertices, p(XA) is defined as : p(xA) = P{Xi = xi | i ∈ A}.
It is easy to see that p(xA) = ∑

x
AC
p(xA, xAC ), where ∑

x
AC

denotes summing over all
possible values of {xi}i∈V \A. For instance, x1,2,4 represents {x1, x2, x4}.

• The joint probability is given by : p(X1 = x1, . . . , Xn = xn) = p(x1, . . . , xn) = p(xV ).
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11.3 About Graphical Models
A Graphical Model is essentially a graph that models the dependencies between a set of
random variables. Graphical models lie at the intersection of probability theory and com-
puter science, in that they use graphs to model distributions over random variables. Graphs
are highly efficient data structures for storing information related to dependencies and thus,
they are extremely useful in the case of modeling distributions. For instance, consider 100
random variables {Xi}1≤i≤100 ∈ {0, 1}. Then, in order to represent the distribution in ta-
ble format, we would require 2100 variables, which is intractable to represent explicitly in a
computer. In contrast, we can use graphical models (with certain assumptions) to keep the
problem tractable.

11.4 Conditional Independence Revisited
Let A,B,C ⊆ V be three subsets of vertices.

• We say that XA⊥⊥XB | XC ⇐⇒ p(xA, xB | xC) = p(xA | xC)p(xB | xC)
∀xA, xB, xC , s.t. p(xC) > 0. This is the Factorization forumulation (F).

• An equivalent Conditional formulation (C) states that XA⊥⊥XB | XC

⇐⇒ p(xA | xB, xC) = p(xA | xC) ∀xA, xB, xC s.t. p(xB, xC) > 0.

• We can state the “marginal independence” of XA, XB as XA⊥⊥XB | φ.

11.5 Two Facts About Conditional Independence
1. Can repeat variables: you are allowed to repeat variables in a conditional statement

(for convenience). For example, X ⊥⊥Y, Z|Z,W is fine to say. It is actually equivalent
to X ⊥⊥Y |Z,W (the second Z on the left does not do anything). This will be useful
when writing generic theorems about conditional statements from a graphical model
(to avoid excluding the repition cases).

2. Decomposition: X ⊥⊥Y, Z|W implies both X ⊥⊥Y |W and X ⊥⊥Z|W (it decomposes
in two conditional independence statements).

11.6 Directed Graphical Models
Definition 11.11 Let G = (V,E) be a DAG with V = {1, . . . , n}. A directed graphical model
(DGM) (associated with G), also known as a Bayesian network, is a family of distributions
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over XV defined as follows:

L(G) , {p is a distribution over XV : ∃ legal factors fi’s (11.1)

s.t. p(xV ) =
n∏
i=1

fi(xi|xπi)∀xV } (11.2)

In the definition above, the legal factors are functions fi : ΩXi × ΩXπi
→ [0, 1] s.t.∑

xi f(xi, xπi) = 1 ∀xπi (and thus fi is like a conditional probability table (CPT) – it could
be used to define a conditional distribution on Xi given the values of its parents Xπi).

Two notes: recall that πi are the parents are node i. In the definition above, the factors
do not have to be unique (i.e. we do not rule out the possibility that the same distribution
could have two expansions with different factors). But it turns out that we can actually
prove that the factors are unique (as we will see when we show that p(xi|xπi) = f(xi, xπi)
below, and thus the factors are uniquely specified by the distribution).

Terminology: if we can write p(xV ) = ∏n
i=1 fi(xi|xπi) where fi’s are legal factors and πi’s

are determined from a DAG G, then we say that p factorizes according to G, and we denote
this by p ∈ L(G) (i.e. p is also a member of the DGM for G). We will also sometimes write
p(xV ) ∈ L(G) if we want to make which variables are considered for the distribution explicit
(see notation in the proofs below).

To give one example, see the three nodes graph from Figure 11.10. Then p ∈ L(G)
for this graph if and only if there exists some legal factors fx, fy and fz s.t. p(x, y, z) =
fx(x)fy(y)fz(z|x, y).

11.7 Leaf-Plucking Property
We first show a fundamental property of DGM which is used in a lot of proofs:

Proposition 11.12 (“Leaf-plucking” property) Let n be a leaf in the DAG G (i.e. n
is not the parent of anything) and suppose p(xV ) ∈ L(G).
a) then p(x1:(n−1)) ∈ L(G− {n})
b) if p(x1:n) = ∏n

i=1 fi(xi|xπi), then p(x1:n) = ∏n−1
i=1 fi(xi|xπi).

Proof

p(xn, x1:(n−1)) = fn(xn|xπn)
∏
j 6=n

fj(xj| xπj︸︷︷︸
no n in any πj

)

p(x1:(n−1)) =
∑
xn

p(xn, x1:(n−1)) = (
∑
xn

fn(xn|xπn︸ ︷︷ ︸
1 by definition

)

 ∏
j 6=n

fj(xj|xπj)︸ ︷︷ ︸
no xn there


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We now use this property to show the important fact that the factors are the same as
conditional probabilities defined from the joint in a DGM G (and thus the factors are the
correct conditionals).

Proposition 11.13 If p(x) ∈ L(G) then, for all i ∈ {1, . . . , n}, p(xi|xπi) = fi(xi, xπi).

Proof We prove this by induction on n = |V |, the cardinality of the set V . Since G is a
DAG, there exists a leaf, i.e. a node with no children. Without loss of generality, we can
assume that the leaf is labeled by n (if not, then just relabel the nodes so that it is true).
We first notice:

∀x, p(x1, . . . , xn−1) =
∑
xn

p(x1, . . . , xn)

=
∑
xn

n∏
i=1

fi(xi, xπi)

=
∑
xn

fn(xn, xπn)
n−1∏
i=1

fi(xi, xπi)

=
n−1∏
i=1

fi(xi, xπi)
∑
xn

fn(xn, xπn) (∗)

=
n−1∏
i=1

fi(xi, xπi)

= g(x1, . . . , xn−1) (∗∗)

(11.3)

The step (∗) is justified by the fact that n is a leaf and thus it never appears in any of the πi
for i ∈ {1, . . . , n−1}. Step (∗∗) is also justified by the same kind of reasoning: since n is a leaf
it cannot appear in any of the πi explaining why it is only a function, say g, of x1, . . . , xn−1.
From this result, we can use an induction reasoning noticing that G − {n} is still a DAG.
To conclude this proof, we simply need to show that, indeed, fn(xn, xπn) = p(xn|xπn)—this
property will automatically propagates by induction. We have:

p(xn, xπn) =
∑

xi,i/∈{n}∪πn

p(x) =
 ∑
xi,i/∈{n}∪πn

g(x1, . . . , gn−1)
 fn(xn, xπn). (11.4)

Noticing that ∑
xi,i/∈{n}∪πn g(x1, . . . , xn−1) is a function of only xπn , say h(xπn), we can derive:

p(xn|xπn) = p(xn, xπn)∑
x′
n
p(x′n, xπn) = h(xπn)fn(xn, xπn)

h(xπn) = fn(xn, xπn). (11.5)

Hence we can give an equivalent definition for a DAG to the notion of factorization:
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Definition 11.14 (Equivalent definition of a DGM) A DGM on G is the set of distri-
butions p(x) that factorizes according to G, denoted p(x) ∈ L(G) iff:

∀x, p(x) =
n∏
i=1

p(xi|xπi). (11.6)

Why didn’t we start with the above definition for a DGM? The reason is that without
the proof above, we would not know whether our definition makes sense, as this definition
is circular. Indeed, the conditional p(xi|xπi) is defined from the joint p(x). So we are not
allowed (normally) to define a joint by multiplying its conditionals (as you might get no
distribution that satisfies this property).

Remark 11.7.1 Adding edges =⇒ more distributions i.e. G=(V, E) and G’=(V, E’) with
E subset of E then L(G) subset L(G’)

11.8 DGM Examples
11.8.1 Trivial Graphs
Example 11.8.1

• (Trivial graph with empty edge set) Assume E = ∅, i.e. there is no edges. Then
the DGM on this graph contains only fully independent distributions (i.e. p(x) =∏n
i=1 p(xi)). (this is the “smallest” DGM).

• (Complete digraph) Assume now we have a complete graph (thus with n(n−1)/2 edges
as we need acyclic for it to be a DAG), we have: p(x) = ∏n

i=1 p(xi|x1, . . . , xi−1), the
so-called ’chain rule’ which is always true. Thus all distributions on xV belongs to the
DGM on the complete graph (this is the “biggest” DGM).

11.8.2 Graphs with three nodes
We give an insight of the different possible behaviors of a graph by thoroughly enumerating
the possibilities for a 3-node graph.

• The two first options are the empty graph, leading to independence, and the complete
graph that gives no further information than the chain rule.

• (Markov chain) A Markov chain is a certain type of DAG showed in Fig. 11.8. In this
configuration we show that we have:

p(x, y, z) ∈ L(G)⇒ X ⊥⊥Z | Y (11.7)

I.e. we have that the “future” Y is conditionally independent on the “past” X given
the “present” Z (assuming the arrow would represent time). On the other, there are
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some distributions p ∈ G(G) for which X is not marginally independent of Y (the
“dependence” flows through Z).
To show the conditional independence statement, we have:

p(z|y, x) = p(x, y, z)
p(x, y) = p(x, y, z)∑

z′ p(z′, x, y) = p(x)p(y|x)p(z|y)∑
z′ p(x)p(y|x)p(z′|y) = p(z|y)

  Z                 YX

Figure 11.8: Markov Chain

• (Latent cause) It is the type of DAG given in Fig. 11.9. We show that:

p(x) ∈ L(G)⇒ X ⊥⊥Y | Z (11.8)

Indeed:
p(x, y|z)p(x, y, z)

p(z) = p(z)p(y|z)p(x|z)
p(z) = p(x|z)p(y|z)

Figure 11.9: Latent cause

• (Explaining away) Represented in Fig.(11.10), we can show for this type of graph:

p(x) ∈ L(G)⇒ X ⊥⊥Y (11.9)

It basically stems from:

p(x, y) =
∑
z

p(x, y, z) = p(x)p(y)
∑
z

p(z) = p(x)p(y)

On the other hand, in general we do not have that X is conditionally independent on Y
given Z (unlike for both the latent cause model and the Markov chain DGM). So here
X is marginally independent on Y , but observing Z induces some dependence between
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Figure 11.10: Explaining away, or V-structure

X and Y . From this graphical model, we can get the so-called non-motononic property
of conditioning. For example, let X be “I’m abducted by alien”, Y be “my watch is
broken”, and Z be “I am late”. The v-structure explains this situation as there are
competing explanation for why “I am late”: I might have been abducted by aliens, or
my watch could be broken and I did not notice the time... In this example, a meaningful
distribution could yield that p(alien) is tiny; but then p(alien|late) > p(alien) (because
knowing that I’m late give some evidence that perhaps I have been adbucted by alien).
But p(alien|late, broken watch) < p(alien|late) (because now that I know that my watch
is broken, it gets unlikely again that I have been abducted by alien, as it’s more likely
that I’m late because of the watch). Thus conditioning on more things can increase or
decrease the probability of an event (hence the word “non-monotone”).

Remark 11.8.1 The use of ’cause’ is not advised since observational statistics provide with
correlations and no causality notion. Note also that in the ’explaining away’ graph, in general
X ⊥⊥Y |Z is not true. Lastly, it is important to remember that not every relationship can
be expressed in terms of graphical models. As a counter-example take the XOR function
where Z = X ⊕ Y . The three random variables are pairwise independent, but not mutually
independent.

11.9 Conditional Independence Statements in DGMs
Definition 11.15 Let nd(i) , {j : no path from i to j}. Then j is said to be a non-
descendent of i.

Proposition 11.16 If G is a DAG, then:

p(x) ∈ L(G)⇔ Xi⊥⊥Xnd(i)\πi |Xπi (11.10)

Proof We will only prove the forward implication. Assume (1, . . . , n) is a topological order
then: 

p(x) =
n∏
i=1

p(xi|xπi) : because p(x) ∈ L(G)

p(x) =
n∏
i=1

p(xi|x1, . . . , xi−1) : chain rule, always true
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As we chose a topological order, we have πi ⊂ {1, . . . , i−1}, and we show by induction that:

p(xi|xπi) = p(xi|x1, . . . , xi−1) = p(xi|xπi , x{1,...,i−1}−πi).

This directly implies that Xi⊥⊥X{1,...,i−1}\πi |Xπi . The key idea now is to notice that for all
i, there exist a topological order such that nd(i) = {1, . . . , i− 1}.

11.10 D-separation
We want to answer queries such as, given A,B and C three subsets, is XA⊥⊥XB|XC true?
To answer those issues we need the d-separation notion, or directed separation. Indeed it is
easy to see that the notion of separation is not enough in a directed graph and needs to be
generalized.

Definition 11.17 Let a, b ∈ V , a chain from a to b is a sequence of nodes, say (v1, . . . , vn)
such that v1 = a and vn = b and ∀j, (vj, vj+1) ∈ E or (vj, vj+1) ∈ E.

We can notice that a chain is hence a path in the symmetrized graph, i.e. in the graph
where if the relation → is true then ↔ is true as well. Assume C is a set that is observed.
We want to define a notion of being ’blocked’ by this set C in order to answer the underlying
question above.

Figure 11.11: D-separation

Definition 11.18 (d-separation)

1. A chain from a to b is blocked at node d “given C” if:

• either d ∈ C and (vi−1, d, vi+1) is not a V-structure;
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• or d /∈ C and (vi−1, d, vi+1) is a V-structure and no descendants of d is in C.

2. A chain from a to b is considered blocked if it is blocked at some of the node d along it.

3. A and B are said to be d-separated by C if and only if all chains that go from a ∈ A
to b ∈ B are blocked by the rules above.

Example 11.10.1 • (Markov chain) If you try to prove that any set of the future is
independent to the past given the present with Markov theory, it might be difficult but
the d-separation notion gives the results directly.

Figure 11.12: Markov chain

• (Hidden Markov Model) Often used because we only observe a noisy observation of the
random process.

observations

etats

Figure 11.13: Hidden Markov Model

Proposition 11.19 (All conditional independence statements in a DGM) p ∈ L(G)
iff XA⊥⊥XB|XC ∀A,B,C such that A and B are d-separated by C in G.

11.11 “Bayes-Ball” Algorithm
This is an intuitive “reacheability" algorithm to determine all the conditional independence
statements in a DAG (via d-seperation). Suppose we want to determine if X is conditionally
independent from Z given Y . Place a ball on each of the nodes in X and let them bounce
around according to some rules (described below) and see if any reaches Z. X ⊥⊥Z|Y is true
if none reached Z, but not otherwise (the balls implement the path rules from d-separation,
and are blocked accordingly).

The rules are as follows for the three canonical graph structures. Note that the balls are
allowed to travel in either direction along the edges of the graph.
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Figure 11.14: Markov chain rule: When Y is observed, balls are blocked (left). When Y is
not observed, balls pass through (right)

1. Markov chain: Balls pass through when we do not observe Y , but are blocked oth-
erwise.

2. Two children: Balls pass through when we do not observe Y , but are blocked other-
wise.

Figure 11.15: Rule when X and Z are Y ’s children: When Y is observed, balls are blocked
(left). When Y is not observed, balls pass through (right)

3. V-structure: Balls pass through when we observe Y , but are blocked otherwise.

Figure 11.16: V-structure rule: When Y is not observed, balls are blocked (left). When Y
is observed, balls pass through (right).

11.12 Properties: Inclusion, Reversal, Marginalization
Inclusion property. Here is a quite intuitive proposition about included graphs and

their factorization.
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Proposition 11.20 If G = (V,E) and G′ = (V,E ′) then:

E ⊂ E ′ ⇔ L(G) ⊂ L(G′) (11.11)

Proof We have p(x) = ∏n
i=1 p(xi, xπi(G)). As E ⊂ E ′ it is obvious that πi(G) ⊂ πi(G′).

Therefore, going back to the definition of graphical models through potential fi(xi, xπi) we
get the result.
Reversal property. We also have some reversal properties. Let us first define the notion
of V-structure.

Definition 11.21 We say there is a V-structure (figure 11.10) in i ∈ V if |πi| ≥ 2, i.e. has
two or more parents.

Proposition 11.22 (Markov equivalence) If G = (V,E) is a DAG and if for (i, j) ∈
E, |πi| = 0 and |πj| ≤ 1, then (i, j) may be reversed, i.e. if p(x) factorizes in G then it
factorizes in G′ = (V,E ′) with E ′ = (E − {(i, j)}) ∪ {(j, i)}.

In terms of 3-nodes graph, this property ensures us that the Markov chain and latent
cause are equivalent. Also, applying the reversal property multiplle times, we conclude that
all directed trees built from an undirected tree give the same DGM.

On the other hand the V-structure lead to a different class of graph compared to the two
others.

Definition 11.23 An edge (i, j) is said to be covered if πj = {i} ∪ πi.

Figure 11.17: Edge (i, j) is covered

By reversing (i, j) we might not get a DAG as it might break the acyclic property. We
have the following result:

Proposition 11.24 Let G = (V,E) be a graph and (i, j) ∈ E a covered edge. Let G′ =
(V,E ′) with E ′ = (E − {(i, j)}) ∪ {(j, i)}, then if G′ is a DAG, L(G) = L(G′).

Marginalization. The underlying question is to know whether the marginalization of
all distributions in a DGM yield another DGM. One can show that marginalizing the leaf
node in a DGM yield a DGM on the smaller graph, but marginalizing internal nodes might
yield a set of distributions which is not representable by a DGM.
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