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Causal Inference
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Causal graphical models (CGM)

A causal graphical model (CGM) is a pair (p,G)
s.t.

G is a directed acyclic graph (DAG)

p ∈ L(G), i.e. p factorizes according to G.

G describes causal relationships between
variables, i.e., how the system reacts to
interventions.

Example: Kidney stone treatment

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

p(S, T, R) = p(S)p(T | S)p(R | S, T)
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The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The “do” operator)

Given a causal graphical model (p,G),

p(x | do(x′k)) := δ(xk, x′k)∏
i ̸=k

p(xi | x
πGi

)

Thus, p(x | do(x′k)) is a "new" distribution over XV .

Can compute marginals, e.g. p(xi|do(x′k)) = ∑xV\{i}
p(x|do(x′k))

... and conditionals, e.g. p(xi|xj, do(x′k)) =
p(xi ,xj |do(x′k))

p(xj |do(x′k))

Remark: p(xV\{k} | do(xk)) = ∏i ̸=k p(xi | x
πGi

).

S. Lachapelle, T. Deleu Mila IFT6269 December 3rd, 2021 5 / 29



Causal inference Causal discovery

The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The “do” operator)

Given a causal graphical model (p,G),

p(x | do(x′k)) := δ(xk, x′k)∏
i ̸=k

p(xi | x
πGi

)

Thus, p(x | do(x′k)) is a "new" distribution over XV .

Can compute marginals, e.g. p(xi|do(x′k)) = ∑xV\{i}
p(x|do(x′k))

... and conditionals, e.g. p(xi|xj, do(x′k)) =
p(xi ,xj |do(x′k))

p(xj |do(x′k))

Remark: p(xV\{k} | do(xk)) = ∏i ̸=k p(xi | x
πGi

).

S. Lachapelle, T. Deleu Mila IFT6269 December 3rd, 2021 5 / 29



Causal inference Causal discovery

The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The “do” operator)

Given a causal graphical model (p,G),

p(x | do(x′k)) := δ(xk, x′k)∏
i ̸=k

p(xi | x
πGi

)

Thus, p(x | do(x′k)) is a "new" distribution over XV .

Can compute marginals, e.g. p(xi|do(x′k)) = ∑xV\{i}
p(x|do(x′k))

... and conditionals, e.g. p(xi|xj, do(x′k)) =
p(xi ,xj |do(x′k))

p(xj |do(x′k))

Remark: p(xV\{k} | do(xk)) = ∏i ̸=k p(xi | x
πGi

).

S. Lachapelle, T. Deleu Mila IFT6269 December 3rd, 2021 5 / 29



Causal inference Causal discovery

The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The “do” operator)

Given a causal graphical model (p,G),

p(x | do(x′k)) := δ(xk, x′k)∏
i ̸=k

p(xi | x
πGi

)

Thus, p(x | do(x′k)) is a "new" distribution over XV .

Can compute marginals, e.g. p(xi|do(x′k)) = ∑xV\{i}
p(x|do(x′k))

... and conditionals, e.g. p(xi|xj, do(x′k)) =
p(xi ,xj |do(x′k))

p(xj |do(x′k))

Remark: p(xV\{k} | do(xk)) = ∏i ̸=k p(xi | x
πGi

).

S. Lachapelle, T. Deleu Mila IFT6269 December 3rd, 2021 5 / 29



Causal inference Causal discovery

The "do" operator

Back to our example

RT

S

P(S, R | do(T)) = P(S)P(T|S)︸ ︷︷ ︸
The decision of taking treatment T

does not depend on S anymore

P(R|S, T)

Notice p(· | do(x′k)) ∈ L(G ′), where G ′ is the mutilated graph, i.e.

G ′ = (V, E′) E′ = {(i, j) ∈ E | j ̸= k}
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Different types of interventions

Intervening on the treatment T

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

Observations

p(S)p(T | S)p(R | S, T)

Perfect intervention

p(S)p̃(T)p(R | S, T)

Imperfect intervention

p(S)p̃(T | S)p(R | S, T)

Definition presented previously is a perfect intervention with p̃(T) := δ(T, T′).
It is sometimes called a perfect deterministic intervention.
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

p(S)p(T | S)p(R | S, T)

(Example taken from Element of Causal Inference by Peters et al. p111)
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Why should I care!?! (Kidney Stone Treatment)

Pay attention to these two questions...

1- What is your chance of recovery knowing that the doctor gave you treatment A?

2- What is your chance of recovery if you decide to take treatment A?

(In both cases, assume you don’t know the size of your stone)
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
Z = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

What is your chance of recovery knowing that the doctor gave you treatment A?

Compute P(R = 1 | T = A) ! (we know how to do that :D)

Knowing that your doctor gave you treatment A tells you that you probably have a
large kidney stone ... P(S = large|T = A) = 0.75

... which reduces your chance of recovery
P(R = 1|T = A, S = large) = 0.73 < 0.93 = P(R = 1|T = A, S = small)

What is your chance of recovery if you decide to take treatment A?

P(R = 1 | do(T = A))

Your really don’t know anything about your kidney stone
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Causal inference Causal discovery

Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
Z = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

What is your chance of recovery knowing that the doctor gave you treatment A?

Compute P(R = 1 | T = A) ! (we know how to do that :D)

Knowing that your doctor gave you treatment A tells you that you probably have a
large kidney stone ... P(S = large|T = A) = 0.75

... which reduces your chance of recovery
P(R = 1|T = A, S = large) = 0.73 < 0.93 = P(R = 1|T = A, S = small)

What is your chance of recovery if you decide to take treatment A?

P(R = 1 | do(T = A))

Your really don’t know anything about your kidney stone

S. Lachapelle, T. Deleu Mila IFT6269 December 3rd, 2021 11 / 29



Causal inference Causal discovery

Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

RT

S

P(S, R | do(T)) = P(S)P(T|S)︸ ︷︷ ︸
The decision of taking treatment T

does not depend on S anymore

P(R|S, T)

Then simply marginalize as usual:

P(R = 1|do(T = A)) = ∑
S

P(R = 1, S|do(T = A))

= ∑
S

P(R = 1|S, T = A)P(S) = 0, 832
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

What is your chance of recovery knowing that the doctor gave you treatment A?

P(R = 1|T = A) = 0, 78 P(R = 1|T = B) = 0,83

What is your chance of recovery if you decide to take treatment A?

P(R = 1|do(T = A)) = 0,832 P(R = 1|do(T = B)) = 0, 782
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Why should I care!?! (Kidney Stone Treatment)

What just happened? We showed

P(R = 1|do(T = A))︸ ︷︷ ︸
Never observed data from p(T, S, R | do(T = A))

= ∑
S

P(R = 1|S, T = A)P(S)︸ ︷︷ ︸
...Yet I can estimate the query, since there is no "do" here :D

Formally, this means p(R = 1 | do(T = A)) is identifiable from p(R, T, S) and G
(our computations critically relied on the causal graph).

Turns out what we just did is an instance of the backdoor criterion...
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Backdoor criterion

Theorem (Backdoor criterion)

p(xi | do(xk)) = ∑xS
p(xi | xk, xS)p(xS) if

1 S contains no descendants of xk, and

2 S blocks all paths from xi to xk entering xk from "the backdoor", i.e. such that
xk ← ... xi

Say we want to compute p(y|do(x)):

Left path: Only backdoor path. Blocked by S = {K}. Right path: Why we cannot include a descendant of X in S.
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Backdoor criterion

Can all identifiable queries p(xi | do(xk)) be expressed with the backdoor criterion?

Answer: No!

Since U is unobserved, we cannot apply the backdoor criterion...

Turns out we can nevertheless identify p(y|do(x)) from p(X, Z, Y) using the
front-door criterion. Look it up!
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Do-calculus

Do-calculus is a set of three rules that can be applied to transform an
interventional query (including a "do") into an observational expression (without
any "do").

Not enough time to present them...

All identifiable queries can be found by a subsequent application of these rules,
i.e. the rules are complete.
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The ladder of causation

You now know about the first two steps of Pearl’s "ladder of causation".

Taken from “The Seven Tools of Causal Inference with Reflections on Machine Learning” by Judea Pearl
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Counterfactual

You need structural causal models (SCM). Let G be a DAG:

X1 := f1(XπG1
) + N1 (1)

X2 := f2(XπG2
) + N2 (2)

. . . (3)

Xd := fd(XπGd
) + Nd (4)

This induces an observational distribution

Can define interventions as well

Can define counterfactual statements (not possible with a causal graphical
model). See Section 6.4 in ECI.
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Causal Discovery
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Markov Equivalence

Recall: A Directed Graphical Model encodes the Conditional Independence of a
distribution.

Multiple DAGs may encode the same Conditional Independence statements.

X Y Z

X Y Z

X Y Z

X

Y

Z

X ̸ |= Z and X |= Z | Y X |= Z and X ̸ |= Z | Y

Two DAGs encoding the same Conditional Independence statements are called
Markov Equivalent.
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Markov Equivalence

Theorem (Verma & Pearl, 1991)

Two DAGs G1 and G2 are Markov Equivalent if and only if they have the same
skeleton and the same v-structures.

V

W

X

Y

Z

G1

V

W

X

Y

Z

G2

V

W

X

Y

Z

CPDAG

Markov Equivalence Classes can be represented as a Completed Partially Directed
Acyclic Graph (CPDAG).
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Faithfulness

A & B are d-separated
given C in G XA |= XB | XC

Global Markov Property

Faithfulness

Exercise: Violation of Faithfulness

X

Z

Y
X := NX

Y := X + NY

Z := X− Y + NZ

with NX, NY, NZ
iid∼ N (0, σ2)

⇒

Structure
Learning X

Z

Y

p(X, Y, Z) is a Multivariate Normal distribution, where the only conditional
independence statements are: X |= Z and X ̸ |= Z | Y.
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Structure Identifiability

Theorem

Assume that p is faithful wrt. G0. The Markov Equivalence class of G0, represented by
its CPDAG, is identifiable from p.

Only the Markov Equivalence class is identifiable from observations, not an
individual graph. Two Markov Equivalent graphs may lead to different causal
conclusions!

X Y or X Y

Under different assumptions, an individual DAG may be identifiable

Additive Noise Model (ANM): Xj := fj(XPaj ) + Nj, Nj
iid∼ N (0, σ2), where fj are nonlinear.

Using interventional data (i.e. data resulting from controlled experiments).
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Causal Structure Learning (Causal Discovery)

How to recover the (CP)DAG using a dataset D?
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Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes X & Y, and
A ⊆ V\{X, Y}, test if X |= D Y | A.
If there is no set A s.t. X |= D Y | A,
then add an edge X — Y.

Step 2: Identify the v-structures

For each structure X — Z — Y with
no edge between X & Y, orient
X→ Z← Y iff Z /∈ A, where A is
such that X |= D Y | A.

A

T

E

L

S

B

X D

IC Algorithm
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Causal inference Causal discovery

Constraint-based methods

Step 2’: Additional orientations

Use Meek’s orientation rules to
orient some of the remaining edges.

X

Y Z

⇓

X

Y Z

Rule 1

X

Y Z

⇓

X

Y Z

Rule 2

X

Y1 Y2

Z

⇓

X

Y1 Y2

Z

Rule 3

X

Y1 Y2

Z

⇓

X

Y1 Y2

Z

Rule 4
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Causal inference Causal discovery

Score-based methods

Idea: treat the problem of learning the structure of the DAG as a model selection
problem

max
G∈DAG

score(G | D)

Recall: choices of scores

Likelihood score:
scoreL(G | D) = log p(D | θ̂MLE

G ,G)

Bayesian score:
scoreB(G | D) = log p(D | G) + log p(G)

Bayesian Information Criterion (BIC):

scoreBIC(G | D) = log p(D | θ̂MLE
G ,G)− log N

2
Dim[G]
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Causal inference Causal discovery

Score-based methods

max
G∈DAG

score(G | D)

How to search over the space of DAGs?

The number of DAGs over n nodes is super-exponential in n: 2Θ(n2).

Theorem
Let G≤d = {G a DAG | every node has at most d parents}. Finding a DAG in G≤d that
maximizes a score is NP-hard for d ≥ 2.

Heuristic solutions:
Greedy algorithms: Hill climbing, GES
Genetic algorithms
Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...
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