1. **Entropy (10 points)**

Let X be a discrete random variable on a space \mathcal{X} with $|\mathcal{X}| = k < \infty$.

(a) Prove that the entropy $H(X) \geq 0$, with equality only when X is a constant.

(b) Denote by p the pmf of X and q the pmf of the uniform distribution on \mathcal{X}. What is the relation between the Kullback-Leibler divergence $D(p\|q)$ and the entropy $H(X)$ of the distribution p?

(c) Deduce a tight upper bound which depends on k for the entropy of any distribution p over \mathcal{X}. Conclude on what is a distribution of maximum entropy on \mathcal{X}.

2. **Mutual information (10 points)**

We consider a pair of discrete random variables (X_1, X_2) defined over the finite set $\mathcal{X}_1 \times \mathcal{X}_2$. Let $p_{1,2}$, p_1 and p_2 denote respectively the joint distribution, the marginal distribution of X_1 and the marginal distribution of X_2.

We define the mutual information between X_1 and X_2 as:

$$I(X_1, X_2) := \sum_{(x_1, x_2) \in \mathcal{X}_1 \times \mathcal{X}_2} p_{1,2}(x_1, x_2) \log \frac{p_{1,2}(x_1, x_2)}{p_1(x_1)p_2(x_2)}.$$

(a) Manipulate the expression above to show that $I(X_1, X_2) \geq 0$.

(b) Let $H(Z)$ be the entropy of the random variable $Z = (X_1, X_2)$. Show that $I(X_1, X_2)$ can be expressed as a function of $H(X_1), H(X_2)$ and $H(Z)$.

(c) What is the joint distribution $p_{1,2}$ over $\mathcal{X}_1 \times \mathcal{X}_2$ of maximal entropy with fixed marginals p_1 and p_2?

3. **Hidden Markov Models (80 points)**

Follow the instructions in this Colab notebook. Please solve the math questions included in the notebook in the cells provided directly in the notebook.

https://drive.google.com/file/d/1GU1hRo6OTPREXZ4tWf8Vn5M7tEE-al2b/view?usp=sharing