Conditional independence in DGM

1. **Markov chain**

 \[
 p(x, y, z) = p(y|x)p(z|x)p(x) \quad \text{but} \quad X \perp Y | Z
 \]

 (exercise) \Rightarrow \ p(x,y|z) = p(z|x)p(y|x)

2. **Latent cause (hidden variable)**

 \[
 \begin{aligned}
 &X \quad \text{age} \quad \\
 &\text{smoke} \times \quad \text{signs} \times \quad \text{gray hair}
 \end{aligned}
 \]

3. **Explaining away/compacting effect**

 \[
 \begin{aligned}
 &X \quad \text{watch is broken} \quad \\
 &\text{watch is broken} \quad \text{in late} \quad \text{but} \quad Y \perp Z
 \end{aligned}
 \]

 (for some p)

Non-monotonic property of conditioning

- \(p(\text{alien}) \) tiny
- \(p(\text{alien}) \text{ late} \geq p(\text{alien}) \)
- \(p(\text{alien} \mid \text{late}, \text{watch is broken}) > p(\text{alien} \mid \text{late}) \)

More cond. indep. statements in DGM

let \(\text{nd}(i) = \{ j \mid j \neq i \text{ and no path from } i \text{ to } j \} \)

"non-descendant of i"

Proof

\[p \in \mathcal{S}(G) \iff X_i \perp X_{\text{nd}(i)} \mid X_j, \forall j \in \text{nd}(i) \]

(by decomposition: \Rightarrow \ X_i \perp X_{\text{nd}(i)} \mid X_j, \forall j \in \text{nd}(i))

Proof

\[\Rightarrow \text{ key point: let } i \text{ be fixed, then } G \text{ a bp. ordering of } G \text{ satisfies } \]

\(\text{nd}(i) \text{ are exactly before } i \text{ i.e. (nd}(i), i \text{, descendant}(i)) \)

\[\Rightarrow p(X_i, X_{\text{nd}(i)}) = p(X_i \mid X_{\text{nd}(i)}) \prod_{j \in \text{nd}(i)} p(X_j \mid X_{\text{nd}(i)}) \]

Please add more
\[
p(x_1; x_{Ind.0}) = p(x_1, x_{Ind.1}) = p(x_1; x_{Ind.1}) \prod_{j \in Ind.1} p(x_j | x_{Ind.1}) = p(x_1; x_{Ind.1})
\]

\[
\text{(suppose \(p \) satisfies all these cond. indep. statements)}
\]

\[
\text{let } 1:n \text{ be (undirected) a top. xnt. of } G
\]

\[
\Rightarrow X_i \perp \!\!\!\!\!\!\perp X_{i:t-1}, x_{i:t}, \text{ by decomposition}
\]

\[
p(x_v) = \prod_{i=1}^{n} p(x_i | x_{i:t-1}) \text{ (by chain rule)}
\]

\[
= \prod_{i=1}^{n} p(x_i; x_{i:t}) \text{ (by cond. indep.)}
\]

\[\Rightarrow p \in S(\mathcal{G})\]

\[\text{other cond. indep. statements?}\]

\[\text{chain from a to b: just any (undirected) path in graph from a to b}\]

\[\text{\(d \)-separation: }
\]

\[\text{def: set } A \& B \text{ are said to be \(d \)-separated by } C \text{ (in } G) \text{ conditioned on set } \{A,B\}
\]

\[\text{iff all chains from a to b are "blocked" given } C
\]

\[\text{where a chain from } a \text{ to } b \text{ is "blocked" given } C \text{ at node } d
\]

\[\text{if a) either } d \in C \text{ and } (v_{i-1}, d, v_i) \text{ is not a } v\text{-structure}
\]

\[\text{b) } d \notin C \text{ and } (v_{i-1}, d, v_i) \text{ is a } v\text{-structure and no descendant of } d \text{ is } v_i \in C
\]

\[\text{prep: } p \in S(\mathcal{G}) \iff X_A \perp \!\!\!\!\!\!\perp X_B \perp X_C \text{ \& } A,B,C \subseteq V
\]

\[\text{iff A \& B are d-separated by } C
\]

\[\text{\"Bayes ball" alg.}
\]

\[\text{\"intuitive" alg. to check } d\text{-separation}
\]

\[\text{rules balls/chains being blocked}
\]
more properties of DGM

- Inclusion: \(E \subseteq E' \Rightarrow s(E) \subseteq s(E') \)
- Reversal: if \(G \) is a directed tree (or a forest) \(\Rightarrow \) there is no \(v \)-structure

- Let \(E' \) be another directed tree (with same undirected edges) by choosing a different root \(\Rightarrow s(E) = s(E') \)
- Reversing: all directed trees from an undirected tree give same DGM

- Marginalization:
 * Marginalizing a leaf node \(n \) gives us a smaller DGM
 \[
 s(S) = \sum_{n} \prod_{i \neq n} q(x_i, n) = \prod_{i \neq n} p(x_i, n) \forall n \in S
 \]
 \[
 s(S) = s((G) \setminus n) \text{ where } G' \text{ is } G \text{ with leaf } n \text{ plucked (removed)}
 \]
* Not true for all marginalizations. Ex. "marginalize out this node"

Let \(G = (V, E) \) be an undirected graph.

Let \(\mathcal{C} \) be the set of cliques of \(G \). A clique is a fully connected set of nodes.

Undirected GM (UGM) (aka. as Markov random field or Markov network)

\[f(G) \triangleq \sum_{\mathcal{C}} \text{p is a dist over } x \]

for some potentials \(\psi_c : \{x\} \to \mathbb{R}_+ \)

\[\mathcal{Z} \triangleq \sum_{\mathcal{C}} \text{p}(x_\mathcal{C}) \]

\[\text{Normalization constant} \]

\text{"partition function"}

Notes:

- Unlike a DGM, \(\psi_c(x) \) is not directly related to \(p(x) \).

- Can rescale any potential without changing the joint.

- It is sufficient to consider \(\psi_{\text{max}} \), the set of maximal cliques.

\[\mathcal{C}_{\text{max}} \subseteq \mathcal{C} \]

Redefine \(\psi_c^{\text{max}}(x_c) \triangleq \psi_c(x_c) \cdot \psi_c^{\text{d}}(x_c) \)

(Just choose one)

\[\text{e.g. } C^2 \subseteq C \]
properties of UGM:

- as before \(E \subseteq E' \Rightarrow \mathcal{Z}(E) \subseteq \mathcal{Z}(E') \)
 \[E = \emptyset \Rightarrow \mathcal{Z}(E) = \text{set } \text{fully synchronized dist.} \]
 \[E = \text{all pairs } \Rightarrow \mathcal{Z}(E) = \text{all dist. on } x \]
 (i.e., \(V \) is
 just a big clique in \(G \))

- if \(\psi_c(x_c) > 0 \) then
 \[\Psi(x) = : \exp \left(\sum_{x_c} \log \psi_c(x_c) - \log z \right) \]
 \[\alpha(x) = |x_c| \]
 \[\phi(x) = \text{log } \psi_c(x_c) \]
 \[\mathcal{T}(x) = \text{log } \psi_c(x_c) \]
 \[\mathcal{Z} = \sum_{x_c} \mathcal{T}(x) \psi_c(x_c) \]
 \[<\Theta_c, \mathcal{T}(x_c)> \text{ where } \Theta_c(x) = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \]
 \[\Theta_c(x) = \text{log } \psi_c(x_c) \]

 physics link \(\rightarrow \) negative energy

 e.g. Ising model in physics

 \(x \in \{0,1\} \)

 node potential \(E = -\text{log } \psi_i(x_i) \)

 edge potential \(E_{ij} = \text{log } \psi_{ij}(x_i \neq x_j) \)

 other examples: social network