
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 15 — October 20
Lecturer: Simon Lacoste-Julien Scribe: Samuel Beland-Leblanc

Disclaimer: Lightly proofread and quickly corrected by Simon Lacoste-Julien.

15.1 HMM: Hidden Markov Model
The Hidden Markov Model (HMM) is a generalization of the latent variable model (such
as the Gaussian mixture model GMM for example) with an added time dependence on the
latent variables Zt.

Zt

Xt

T

Figure 15.1: Latent variable model (GMM is an example)

Z1 Z2 . . . ZT

X1 X2 XT

Figure 15.2: Latent variable model with added dependence on Zt ⇒ HMM

• Latent variable: Zt ∈ {1, . . . , k}, discrete

– Later, Zt ∼ Gaussian→ Kalman Filter

• Observed variable: Xt

– Continous (e.g. speech signal)
– Discrete (e.g. DNA sequence)

15-1

Lecture 15 — October 20 Fall 2018

From DGM theory, we get the following joint probability:

p(x1:T , z1:T) = p(z1)
T∏
t=1

p(xt|zt)︸ ︷︷ ︸
emission prob.

T∏
t=2

p(zt|zt−1)︸ ︷︷ ︸
transition prob.

(15.1)

Often, the emissision probabilities and the transition probabilities are homoge-
neous (i.e. they don’t depend on t). Hence, we have that:

• pt(xt|zt) = f(xt|zt)

• pt(zt = i|zt−1 = j) = Aij

– A is named the Transition Matrix (or Stochastic Matrix)
– ∑

iAij = 1,∀j. A column j of the transition matrix can be seen as a probability
distribution over zt.1

15.1.1 Inference Tasks
There are multiple inference tasks of interest when using HMM’s. The general task is to
compute the probability of a sequence of hidden state z given an observable output sequence
x. But, there are also some marginal probabilities that are interesting to get :

• Prediction: p(zt|x1:t−1)→ Where next?

• Filtering: p(zt|x1:t)→ Where now?

– The term filtering comes from the interpretation that the output xt provides
"noisy" information about the underlying "signal" zt. So the "noisy" signals are
filtered based on the value of p(zt|x1:t).

• Smoothing: p(zt|x1:T), t < T → Where in the past?

In order to perform these inferences, we need to take advantage of the conditional in-
dependence involved in the graphical model when conditioning on a latent variables. By
conditioning on zt, we make zt−1 independent of zt+1 (i.e. the future is independent of the
past given the present). This thus gives us the following :

1Note that some textbooks use a normalized row convention instead of our normalized column one. Simon
prefers the column convention as then the updates are matrix vector products (see the HMM message passing
updates later).

15-2

Lecture 15 — October 20 Fall 2018

p(zt|x1:T) = p(x1:T |zt)p(zt)
p(x1:T)

= p(x1:t|zt)p(xt+1:T |zt)p(zt)
p(x1:T)

= p(x1:t, zt)p(xt+1:T |zt)
p(x1:T)

= α(zt)β(zt)
p(x1:T)

= α(zt)β(zt)∑
zt
α(zt)β(zt)

Where α and β are two recursion that we will define.

α-recusion

We will use the sum product algorithm here to derive recursions to compute the probabilities
(as a didactic example of sum product on UGMs – one can also derive these recursions directly
instead).

Zt−1 Zt. . .

Xt−1 Xt

mzt−1→zt(zt)

mxt→zt(zt)

Figure 15.3: Visual representation of α-recursion

Instead of computing the filtering distribution, we will compute the joint marginal p(zt, x̄1:t) ∝
p(zt|x̄1:t) using message passing. Here we are using the x̄ notation to indicate that the ob-
servation are fixed for the marginalization. So we get:

15-3

Lecture 15 — October 20 Fall 2018

p(zt, x̄1:t) = 1
Z

1 ·mzt−1→zt(zt) ·mxt→zt(zt)

with mxt→zt(zt) =
∑
xt

p(xt|zt)δ(xt, x̄t) = p(x̄t|zt)

with mzt−1→zt(zt) =
∑
zt−1

p(zt|zt−1)mzt−2→zt−1(zt−1) ·mxt−1→zt−1(zt−1)︸ ︷︷ ︸
p(zt−1,x̄1:t−1)=αt−1(zt−1)

Note that Z = 1 above as we had a DGM; and the 1 in the first equation is because we did
not have any node potential.

Let’s then define : αt(zt) , p(zt, x̄1:t), which can be expressed using the above derivations
(making the recursion explicit) as :

αt(zt) = p(x̄t|zt)
∑
zt−1

p(zt|zt−1)αt−1(zt−1) (15.2)

This is the α-recursion (a.k.a forward recursion). It is like the collect phase in the sum
product algorithm using zt as the root. We can also express it as a matrix-vector product.
From the definition we just proposed, we can see that :

αt(zt) = p(x̄t|zt)︸ ︷︷ ︸
vector(zt)

∑
zt−1

p(zt|zt−1)︸ ︷︷ ︸
matrix

αt−1(zt−1)︸ ︷︷ ︸
vector

Let Ot(zt) , p(x̄t|zt), then using the Hadamard product (�) we can redefine the α-
recusion like this:

αt = Ot � Aαt−1 (15.3)

The initialization for the α-recursion is simply : α1(z1) = p(z1, x̄1) = p(z1)p(x̄1|z1).
Also, we can observe that if we renormalize αt over zt, we get our filtering distribution
α̃t , p(zt|x̄1:t). From the α, we can also get the evidence probability:

∑
zt

p(zt, x̄1:t) =
∑
zt

αt(zt) = p(x̄1:t) (15.4)

Time complexity: O(t · k2) (k2 for the matrix/vector products over k states repeated t
times)

Space Complexity: We only need an extra storage of O(k) for the alpha recursion. Note
that it takes O(k2) to store the whole A matrix (i.e. transition matrix), but this is
given by the problem, so it is not “extra storage”.

15-4

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

Lecture 15 — October 20 Fall 2018

β-recursion : smoothing

Zt Zt+1 . . . ZT

Xt+1 XT

. . . αt(zt)

mzt+1→zt(zt)

Figure 15.4: Visual representation of the β-recursion

To get our smoothing probability, we need to also consider the information for T > t; this is
where the beta recursion is needed. To get the joint marginal on zt and all the observations,
we have :

p(zt, x̄1:T) = 1
Z
αt(zt) ·mzt+1→zt(zt)︸ ︷︷ ︸

,βt(zt)

(15.5)

From the conditional independence property we explained earlier, we get :

βt(zt) , p(x̄t+1:T |zt) (15.6)

By expanding the message in equation 15.5, we can expose the actual recursion :

mzt+1→zt(zt) =
∑
zt+1

p(zt+1|zt)p(x̄t+1|zt+1)mzt+2→zt+1(zt+1) (15.7)

βt(zt) =
∑
zt+1

p(zt+1|zt)p(x̄t+1|zt+1)βt+1(zt+1) (15.8)

With the following initialization : βT (zT) = 1,∀zT .2
Finally, from the sum-product algorithm, we can obtain the edge marginal as :

p(zt, zt+1, x̄1:T) = αt(zt)βt+1(zt+1)p(zt+1|zt)p(x̄t+1|zt+1) (15.9)
2This can be seen as we do not observe anything for t > T , so marginalizing all the leaves of a DGM

there just yields the value 1. (Leaf plucking property)

15-5

Lecture 15 — October 20 Fall 2018

15.1.2 Numerical Stability Trick
A big problem with doing inference in HMM’s is the amount of multiplication of values
<< 1, which makes it so that αt and βt can easily go to 1e − 100. This is bad as it can
underflow. There are 2 tricks that can be used in order to avoid this.

(A) (General) Store log(αt) instead

Let:

ã , max
i
ai

imax , arg max
i

ai

Then we use the following :

log
(∑

i

ai

)
= log

(
ã

(∑
i

ai
ã

))

= log(ã) + log
1 +

∑
j 6=imax

exp (log(ai)− log(ã))

(B) Normalize the Messages

For the α-recursion. we can use our previously defined α̃t(zt) = p(zt|x̄1:t) (filtering distri-
bution). We initially had αt(zt) = Ot(zt)� Aαt+1(zt−1). Now, we get:

α̃t = Ot(zt)� Aα̃t+1(zt−1)∑
zt

(Ot(zt)� Aα̃t+1(zt−1)) (15.10)

It is possible to show that:

∑
zt

(Ot(zt)� Aα̃t+1(zt−1)) = p(x̄t|x̄1:t−1)

, ct

We hence get : p(x̄1:T) = ∏T
t=1 p(x̄t|x̄1:t−1) = ∏T

t=1 ct.
Now, for the β-recursion, we define :

β̃(zt) ,
βt(zt)

p(x̄t+1:T |x̄1:t)
= βt(zt)∏T

u=t+1 cu
(15.11)

Note here that ∑zt
β̃(zt) 6= 1 in general, but it will have a reasonable value (not underflow),

and has the advantage of not requiring much extra computation by re-using the stored ct
values. Exercise: derive the β̃-recursion.

15-6

Lecture 15 — October 20 Fall 2018

15.1.3 Maximum Likelihood for HMM
First of all, let:

p(xt|zt = k) = f(xt|ηk), η = (ηk)Kk=1 (for some parametric model (e.g. Gaussian))
p(zt+1 = i|zt = j) = Ai,j, (where A is the transition matrix)

p(z1 = i) = πi (since z1 has no parents)

We want to estimate our parameters θ̂ = {η̂, Â, π̂} from the sequences of data (x(i))Ni=1,
where x(i) = x

(i)
1:Ti

. As we have a latent variable model, we are going to use EM.

E-step

Let s be the sth iteration. Then our E-step at time s+ 1 is simply our α− β recursion with
our parameters at time s:

qs+1 = p(z|x, θ(s)) (15.12)

M-step

We are trying to optimize :

θ̂(s+1) = arg max
θ∈ H

Eqs+1 [log p(x, z)] (15.13)

For this we are going to use the complete log-likelihood:

log p(x, z|θ) =
N∑
i=1

[
log p(z(i)

1) +
T∑
t=1

log p(x̄(i)
t |z

(i)
t) +

T∑
t=2

log p(z(i)
t |z

(i)
t−1)

]
(15.14)

Now if we look at each term individually, we will be able to maximize with respect to θ
after.

1. log p(z(i)
1)⇒ ∑

k z
(i)
1,k log πk

2. log p(x̄(i)
t |z

(i)
t)⇒ ∑

k z
(i)
t,k log f(x̄(i)

t |ηk)

• Eqs+1

[
z

(i)
t,k

]
= qs+1(z(i)

t,k = 1) , τ
(i)
t,k (soft counts)

• qs+1(z(i)
t,k = 1) is our smoothing distribution p(z(i)

t |x̄
(i)
1:Ti

)

3. log p(z(i)
t |z

(i)
t−1)⇒ ∑

l,m z
(i)
t,l z

(i)
t−1,m logAl,m

• z(i)
t,l z

(i)
t−1,m ⇒ qs+1(z(i)

t,l = 1, z(i)
t−1,m = 1) , τ

(i)
t,l,m (soft counts)

• qs+1(z(i)
t,l = 1, z(i)

t−1,m = 1) is our smoothing edge marginal p(z(i)
t,l = 1, z(i)

t−1,m =
1|x̄(i)

1:Ti
, θ(s))

15-7

Lecture 15 — October 20 Fall 2018

Maximize with respect to θ

π̂s+1
k =

∑N
i=1 τ

(i)
1,k∑N

i=1
∑
l=1

τ
(i)
1,l︸ ︷︷ ︸

1

=
∑N
i=1 τ

(i)
1,k

N
(15.15)

Â
(s+1)
l,m =

∑N
i=1

∑T
t=2 τ

(i)
t,l,m∑

u

∑N
i=1

∑T
t=2 τ

(i)
t,u,m

(15.16)

As for η̂k, this will depend on the parametric model used, but you get them using soft
count maximum likelihood similar to how it was used in GMM (e.g. for Gaussians we had
the weighted empirical mean)

We just described what is called the Baum-Welch algorithm consisting of forward-
backward using α− β recursion/sum-product with EM for HMM’s.

Finally, to find arg maxz1,...,zT
p(z1:T |x̄1:T), we must use the Viterbi algorithm (i.e. max

product) seen earlier.

15-8

	HMM: Hidden Markov Model
	Inference Tasks
	Numerical Stability Trick
	Maximum Likelihood for HMM

