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Setting

We want to do inference with an intractable distribution:
e Sampling.

e Computing expectations.

Sampling is intractable, but:
e Objects can be built compositionally.

e There is access to a reward function.




Structure Learning

Let X1, Xo,..., X, be rvs. We want to construct a “minimal” graph

such that:
p(x17x27 I 7$d> = E(g)
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Flow Networks




Flow Networks

e Dag (G = (S,A) with source and sink states sg, S5 € S
e Trajectories T = (81,...,8,), where s;—s;11 € A
e Let 7 be the set of all trajectories.

e Forward transition probabilities Pp(s’ | s)

n—1

Y srecnitags) Pr(s’ | 8) =1 Pp(r) := ] Pr(sts1 | s0)
t=1




Flow Networks

Instead of modeling probabilities on the graph, consider flows:

F:T =Rt

F(s):=F({reT :s€1})= Z F(T)

T7€T :SET

F(s—=s)=F{reT :s2s er})= Z F(7)

T7€T :s—s’er




Flow Networks
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Flow Networks

Flows induce a probability distribution over the graph:

F(s0) = Y F(r) = Z, P(s) = F;)
T€T

F(sz)= ) Flr)=2Z _
reT P(s—s' | s) = F(F(—s)) )

1"




Flow Networks

e The flow does induce a distribution over the terminating states.

e |t tells us the likelihood of sampling each object.

Pr(s) :== P(s = s5) = F(s ; Sf) sgf Pr(s) = 1.
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Flow Networks

If we could learn a flow that matches a reward function on the states:
e A probability distribution over terminating states follows.
e The probabilities are proportional to the flow (and thus, to the reward).

e And the graph G can be used to efficiently sample objects (with that
probability).

But parameterizing a flow is expensive! -> One value per trajectory in G.
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Markovian Flow Networks

Instead, consider Markovian flow networks:
P(s—s' | 1) = P(s—s' | s)

e Cheaper to model.
e Induces a unique forward transition probability P(s’|s).

e Prop. 23 in GFlowNet Foundations: the set of markovian flows is
expressive enough to represent all flow functions over trajectories@
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slacoste
Sticky Note
This is not completely true: some flow functions over trajectories are not Markovian; but you can find a Markovian flow that agree with it on the *flow edges*.


Markovian Flow Networks

For a flow to be valid, it must follow that:

F(s)= Z F(s—s)

s'eChild(s)

Fls) = Z F(s—s)

se€Par(s’)
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Generative Flow Networks - GFlowNets

A GFlowNet is a (Markovian) flow network where:
Vs €S/ F(s—= sp) = R(s)

e Ris a given reward function.
o If sis not a valid terminating state, set a reward of 0.

e Fis parameterized with (say) a NN.

If F: (i) is a flow and (ii) satisfies the equation above, then samples are
drawn proportional to R.
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Training GFlowNets




Training GFlowNets

The NeurlPS 2021 GFlowNet paper enforces flow matching:

Z Fy(s — §') — Z Fg(s’—>s")=

sePa(s’) s'’€Ch(s’)

Which leads to the following objective:

llog > Fyls = ) )”

R(5) + 2 Fols' = 5"
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Training GFlowNets

The expectation is over all trajectories -> intractable.

L(¢) = Eqr

1
[ O R(S) + 2 Fo(s' — 5

>, Fo(s = &) )”

In practice, trajectories are sampled.
e If there is structure, the GFlowNet could generalize across trajectories.

e Trade-off between sampling likely trajectories and exploration.
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Alternative Loss Functions
Detailed balance (Bengio et al., 2021):
Fp(s)Pr(s'" | s) = Fo(s')Pg(s | §)

Trajectory balance (Malkin et al., 2022):

ZHPF(St|St 1 Sn H St 1|3t)

Trajectory Balance: Improved Credit Assignment in GFlowNets. Nikolay Malkin et al., NeurlPS 2022.
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https://arxiv.org/pdf/2201.13259.pdf

GFlowNets in Context




Markov Chain Monte Carlo

MCMC GFlowNets
e No “setup” cost. e Needs to be trained.
e Samples are not independent e Samples are independent.
e Sampling is costly e Sampling is efficient: do

. ) ancestral samplin
o Mixing time can scale poorly pling

o Mode mixing




Generative Modeling

Generative Modeling

e Trained on data, to maximize its
likelihood.

e Prone to overfitting.

e Improves with more data.

GFlowNets

e Trained to match a reward
function.

e Prone to underfitting.

e Improves with more trajectories.
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Reinforcement Learning

Reinforcement Learning GFlowNets

See section 7.2 in GFlowNet Foundations
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Applications




Combinatorial Optimization Problems

For instance, finding the largest clique in a graph.
e States: sets of fully connected nodes.

e Reward: size of the set.

S

Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. Dinghuai Zhang,
et al. NeurlPS 2023.
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https://arxiv.org/pdf/2305.17010.pdf

Scientific Discovery

For instance, constructing molecules.

e States: sets of partially constructed molecules.

Reward

O O CHy
/ ()H
Naproxen

e Reward: a property of the molecule.

Reward

Ibuprofen
Reward

'@_S:Hi Reward

GFlowNets for Al-Driven Scientific Discovery. Moksh Jain, et al. Digital Discovery 2023.
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https://arxiv.org/pdf/2302.00615.pdf

GFlowNet EM




Structure Learning
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Extensions
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Extensions

e Continuous GFlowNets
e Conditional GFlowNets
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Generative Flow Networks and
Bayesian Structure Learning



Structure Learning

Credit to Tristan Deleu
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Structure Learning

e (Graphical representation of the conditional
independences in a distribution, represented as
a Directed Acyclic Graph (DAG).

e The joint distribution is decomposed as:

d
P(X1,...,Xa) = || P(Xk | Pag(Xy))

= ® ©
e Structure learning: Given a dataset of
observations D, find the graph structure G. Data Bayesian
Network
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Markov Equivalence

e Recall: A Directed Graphical Model encodes the Conditional Independence of a distribution.

e Multiple DAGs may encode the same Conditional Independence statements.

XA Z and X1 Z|Y XA Z and X P Z|Y

e Two DAGs encoding the same Conditional Independence statements are called Markov
Equivalent.



Markov Equivalence

Theorem (Verma & Pearl, 1991)

Two DAGs Gi1 and Go are Markov Equivalent if and only if they have the same skeleton and
the same v-structures.

A A ATANN YA

Gq Go CPDAG

 Markov Equivalence Classes can be represented as a Completed Partially Directed Acyclic
Graph (CPDAG).



Faithfulness

A & B are d-separated

X = Ny Structure

S Y =X+ Ny Legng O—(
Z:=X—Y+N; @/
with Ny, Ny, Nz ~ N (0, 02)

p(X, Y, Z) is a Multivariate Normal distribution, where the only conditional independence
statementsare: X I Zand X . Z | Y.



Structure ldentifiability

If p is faithful wrt. GO, then the Markov Equivalence class of G is identifiable from p.

e Only the Markov Equivalence class is identifiable from observations, not an individual
graph. Two Markov Equivalent graphs may lead to different causal conclusions!

O— or CO—

e Under different assumptions, an individual DAG may be identifiable

iid

* Additive Noise Model (ANM): X; := f;(Xp,,) + N;, N; ~ N(0,0?), where fj are nonlinear.

e Using interventional data (i.e. data resulting from controlled experiments).



Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes X & Y, and
A CV\{X, Y}, testif X Il Y| A.

If thereisnoset Ast. X L5 Y | A, then
add an edge X — Y.



Constraint-based methods

Step 1: Identify the skeleton @

For each pair of nodes X & Y, and
A CV\{X,Y}, testif X Il Y| A.

If thereisnoset Ast. X L5 Y | A, then
add an edge X — Y.

Step 2: Identify the v-structures

For each structure X — Z — Y with no edge

between X & Y, orient X - Z <+ Yiff Z ¢ A,
where A is such that X L Y| A. @



Constraint-based methods

Rule 1 Rule 2 Rule 3 Rule 4
X
ﬁ() 1 N @B &
Step 2’: Additional orientations "D—2) €
Use Meek’s orient.at.ion rules to orient I I I I
some of the remaining edges.
X
O—@ O—G 6 6



Score-based methods

e Treat the problem of learning the structure of the DAG as a model selection problem

max score(G | D)
GeDAG

Choice of scores

* Likelihood score: SCOIGL(Q | D) = logp(D | ég[LE, Q)

» Bayesian score: scoreg(G | D) =logp(D | G) + logp(G)

 Bayesian Information Criterion (BIC):

. log N
scoreg;c(G | D) = logp(D | OglLE, g) >

Dim|G]



Score-based methods

max score(G | D)
GeDAG

e How to search over the space of DAGs?

- . . 09O(n?)
e The number of DAGs over n nodes is super-exponential in n: 2

Let Geg = {G a DAG | every node has at most d parents}. Finding a DAG in G<q4 that
maximizes a score is NP-hard for d > 2.

e Heuristic solutions:
e Greedy algorithms: Hill climbing, GES
e (Genetic algorithms

e (Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...



Bayesian Structure Learning

e \When the dataset is small, we want to take into
account the epistemic uncertainty over the
graph structures of the Bayesian Network.

e Markov Equivalence: There may be multiple

graphs encoding the same conditional Bayesian Structure Learning:

Instead of finding a single graph from

Independences. observations, characterize the whole
osterior distribution over graphs:
D—O—@ P b
D—0—@ ®\ f pc | p) = PPIGPG)
®+—0—@ P(D)
XA Z and X1 Z|Y X1 Z and XA Z|Y

e From the point of view of observations, Markov
equivalent graphs fit the data equally well.
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Bayesian Structure Learning

Bayesian Structure Learning:
Instead of finding a single graph from
observations, characterize the whole
posterior distribution over graphs:

P(D | G)P(G
t P(D)
Graphs are discrete and composite objects The marginal likelihood is in general intractable
The number of DAGs is super-exponential in the
number of nodes (eq. there are 1072 DAGSs over 15 nodes) P(D ‘ G) — / P(D ‘ 9, G)P(@ | G)d@
©

We will choose models so that this can be computed efficiently in closed form.
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Markov Chain Monte Carlo

Approximate the posterior distribution using .
Markov Chain Monte Carlo (MCMC).

Build a Markov chain by adding, removing, or

reversing edges uniformly at random. (5, (B)
| | N @“@ G0 —\d ©
Issue: Highly multimodal distribution (Markov

equivalence), leading to poor mixing of the
Markov chain. o

[€SJIOAIY

David Madigan, Jeremy York, Denis Allard.
Bayesian Graphical Models for Discrete Data. 1995.
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DAG-GFlowNet
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GFlowNet over DAGs

e DAGs are constructed sequentially one edge at
a time, starting from the empty graph.

e All the states of the GFlowNet are valid DAGs,
meaning that all the states are terminating.

e A new edge to be added to a DAG:
e must not already be present;

e must not introduce a cycle.

e We can filter out invalid actions using a mask, = =
that can also be updated online. R(G) R(Gs)



Detailed balance condition

Flow matching condition (Bengio et al., 2021)

Z FH(S B S,) - Z FH(S, v 8”) — R(S,) P(St_|_1 ‘ St) X Fg (St — St_|_1)
sePa(s’) s’’€Ch(s’)

Detailed balance condition (Ours)

V' Valid when all the states of the GFlowNet are terminating

R(s")Pp(s | s")Ps(sf | s) = R(s)Py(s" | s)Py(ss | s") V' Induces a distribution P(s) < R(s)

I T V' It does not depend on flows anymore (flow-matching or
detailed balance conditions).
Fixed backward Learned forward
iy p- A
transition probability transition probability v It does not depend on the total flow

e.g. Uniform distribution (trajectory balance condition).
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Forward Transition Probabilities

Hierarchical model for the forward transition probabilities: Py(G' | G) = (1 — Py(sf | G)) Po(G" | G, —s§)

-
= dp
EHREIIERE
ZN=] = =
7] =3 Pl B 2> 2 —
@ - — 5 = Cl T | L
) _ »EE _ > >
G <o
oS -lE2 KOS —>§ n Py(G" | G,~sy)
= =S| ¥ || B T | 4 —
»SCD —
o, 0
B | &5 O |»| =t 0 — B
S & © o
=5 a
m FEmbeddings Linear Transformer =
Py(sr | G)

v Independent of the order of edges. v The number of parameters does not scale

. too much with the size of the graph.
v Set-to-set architecture. Jrap

v No quadratic scale with the input size.
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Application to Bayesian Structure Learning

Bayesian Structure Learning

Characterize the posterior distribution over DAGs GFlowNet
P(D | GYP(G A GFlowNet induces a distribution
pG| )~ PPIOPE
P(D) P(s) x R(s)

DAG-GFlowNet
R(G) = P(D | G)P(G)
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Tools from Reinforcement Learning

The GFlowNet is trained off-policy

We use a replay buffer to store transitions over the course
of training, and sample transitions from the replay buffer

£(6)

log

R(G")Pg(G | G')Pa(ss | G)]°

R(G)Py(C" | G)Po(s; 1 G) |
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Experimental results
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Experimental results — Accurate approximation

Comparison with the exact posterior distribution P(G | D) on graphs with d = 5 nodes,
computed by enumerating the 29,281 possible DAGs.

DAG-GFlowNet
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Experimental results — Simulated data

E-SHD AUROC log P(G,D" | D)
100 | | | | | | | ] 1 | | | | | | | | |
X - ] i ke e e e e e e e e e e T T T T e e e E————
: . Lower | 1 — -— | == ==
= — s better ¥- s = 1 "
T 1 1 08| - - 850 - _x -
60 |- X ) i X H ) : -
- — — —1 T — 800 |- X N
0.6 |- T . B 1 |
. 1 — . 750 |- -
-0 |- —— - Higher T - . Higher T .
—— 041 —— is better - X is better R
| | | | | | | | | | | | 700 | | | | |
MC? Gadget B-PC B-GES DiBS BCD GFN MC?® Gadget B-PC B-GES DiBS BCD GFN MC?® Gadget B-PC B-GES DiBS BCD GFN
(. (. (N
MCMC Bootstrapping Variational Inference



Experimental results - Flow cytometry data

e Real-world flow cytometry data, to learn protein
signaling pathways.

e Data: continuous measurements of 11
phosphoproteins. There are 853 observations.

e T[he ground truth graph contains 11 nodes and
17 edges.

e T[he consensus graph may not represent a
realistic description of the system.

Large bubble is better

Sampling more diverse graphs from the same MEC

\
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log-marginal probability of MEC

Experimental results - Flow cytometry data
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Experimental results - Interventional data

e The real world flow cytometry data also contains
iInterventional data, based on experimentations
where some phosphoproteins are inhibited.

e \We model these as perfect interventions,

even though it may not be the case in practice. -7+ Lidges L-SHD AUROC
Exact posterior™ — — 0.816
e \We know the intervention targets. MC? 20.97+0.01 25.08 4+ 0.02 0.665

DAG-GFlowNet  30.66 +0.04  27.77 + 0.03 0.700

e \We can adapt the reward function (computation
of the marginal likelihood) to handle a mixture of
observational & interventional data.

e This is a first step toward causal discovery.
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Thank you
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github.com/tristandeleu/jax-dag-gflownet
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https://github.com/tristandeleu/jax-dag-gflownet



