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For each question, provide your derivations and not just the answer.

1. Probability and independence (10 points) Prove or disprove each of the following prop-
erties of independence.

(a) (X ⊥ Y,W | Z) implies (X ⊥ Y | Z)
(b) (X ⊥ Y | Z) and (X,Y ⊥W | Z) imply (X ⊥W | Z)
(c) (X ⊥ Y,W | Z) and (Y ⊥W | Z) imply (X,W ⊥ Y | Z)
(d) (X ⊥ Y | Z) and (X ⊥ Y |W) imply (X ⊥ Y | Z,W)

Hint: If you are convinced a statement is false, come up with a concrete and simple
counterexample for which the statement is not true.

2. Bayesian inference and MAP (10 points)
LetX1, . . . ,Xn | π

iid∼ Multinomial(1,π) on k elements. The encoding for a possible value xi of
the random vector Xi can take is xi = (x(i)

1 , x
(i)
2 , . . . , x

(i)
k ) with x(i)

j ∈ {0, 1} and ∑k
j′=1 x

(i)
j′ = 1.

In other lingo, Xi is a k-dimensional one-hot vector.
Consider a Dirichlet prior distribution on π: π ∼ Dirichlet(α), where α = (α1, α2, . . . , αk)
and αj > 0 for all j. The Dirichlet distribution describes a continuous random vector π which
lies on the probability simplex ∆k := {π ∈ Rk : 0 ≤ πj ≤ 1 and ∑k

j=1 πj = 1}.

Its probability density function1 is p(π|α) = Γ(
∑k

j=1 αj)∏k

j=1 Γ(αj)

∏k
j=1 π

αj−1
j . Just like the Binomial

distribution is the special case of a Multinomial distribution with k = 2, the Beta distribution
is the 2-dimensional instantiation of a Dirichlet distribution.

(a) Supposing that the data is IID, what are the conditional independence statements that
we can state for the joint distribution p(π,x1, . . . ,xn)? Write your answer in one line,
in the form of formal conditional independence statements (like X1 ⊥ X2 | X3). Ignore α
for this exercise.

(b) Derive the posterior distribution p(π | x1, . . . ,xn). The expected answer has the form:
“The posterior is a distribution with parameters ”.

(c) Derive the marginal probability p(x1, . . . ,xn) (or equivalently p(x1, . . . ,xn | α).) This
quantity is called the marginal likelihood and we will see it again when doing model
selection later in the course.

(d) Derive the MAP estimate π̂ for π assuming that the hyperparameters for the Dirichlet
prior satisfy αj > 1 for all j. Compare this MAP estimator with the MLE estimator for
the multinomial distribution seen in class in the regime of extremely large k.2

3. Properties of estimators (20 points)

(a) Let X1, . . . , Xn
iid∼ Poisson(λ). The pmf for a Poisson r.v. is p(x|λ) = e−λ λx

x! for x ∈ N.
Find the MLE for λ and derive its bias, variance and consistency (Y/N).

(b) Let X1, . . . , Xn
iid∼ Bernoulli(p) and suppose that n > 10. Consider p̂ := 1

10
∑10
i=1Xi as an

estimator of p. Derive its bias, variance and consistency (Y/N).
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(c) Let X1, . . . , Xn
iid∼ Uniform(0, θ). Find the MLE for θ and derive its bias, variance and

consistency (Y/N).
Hint: For each c ∈ R, P (max{X1, . . . , Xn} < c) = P (X1 < c,X2 < c, . . . , Xn < c) =
P (X1 < c)P (X2 < c) · · ·P (Xn < c).

(d) Let X1, . . . , Xn
iid∼ N (µ, σ2) (where µ ∈ R) for n ≥ 2 to simplify. Let X̄ := 1

n

∑n
i=1Xi.

Show that the MLE3 for θ := (µ, σ2) is µ̂ = X̄ and σ̂2 := 1
n

∑n
i=1(Xi − X̄)2. Derive the

bias, variance and consistency (Y/N) only for σ̂2.
Hint: Let χ2

n−1 be the chi-squared distribution with (n − 1) degrees of freedom. When
calculating the variance of σ̂2, you may use the fact that Var[χ2

n−1] = 2(n − 1), and that
1
σ2

∑n
i=1(Xi − X̄)2 d= χ2

n−1.

4. Maximum Likelihood Estimation (10 points)
Follow the instructions in this Colab notebook: https://colab.research.google.com/
drive/1zPg4qksvcOlLhWRfjF0xkXnFoc8WWkiL?usp=sharing

Notes

1Formally, this density function is taken with respect to a (k−1)-dimensional Lebesgue measure defined on ∆k.
But equivalently, you can also think of the density to be a standard one in dimension k − 1 defined for the first
k − 1 components (π1, . . . , πk−1) which are restricted to the (full) dimensional polytope Tk−1 := {(π1, . . . , πk−1) ∈
Rk−1 : 0 ≤ πj ≤ 1 and

∑k−1
j=1 πj ≤ 1}, and then letting πk := 1 −

∑k−1
j=1 πj in the formula. Note that this bijective

transformation from Tk−1 onto ∆k has a Jacobian with a determinant of 1, which is why the two Lebesgue measures
are equivalent and one does not need to worry about which of the two spaces we are defining the density on.

2An example of this is when modeling the appearance of words in a document: here k would be the numbers of
words in a vocabulary. The MAP estimator derived above when the prior is a symmetric Dirichlet is called additive
smoothing or Laplace smoothing in statistical NLP.

3Note that formally we should use the notation σ̂2 (which looks ugly!) as we are estimating the variance σ2 of
a Gaussian rather than its standard deviation σ. But as the MLE is invariant to a re-parameterization of the full
parameter space (from σ2 to σ e.g.), then we simply have σ̂2 = σ̂2 and the distinction is irrelevant.

https://colab.research.google.com/drive/1zPg4qksvcOlLhWRfjF0xkXnFoc8WWkiL?usp=sharing
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