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Disclaimer: These notes have been quickly proofread by Simon Lacoste-Julien.

12.1 Expectation Maximization
The Expectation-maximization (EM) algorithm is an iterative method for finding maximum
likelihood estimates of parameters in statistical models, where the models depend on un-
observed latent or hidden variables z. Latent variables are variables that are not directly
observed but are rather inferred from other variables that are observed. This model is
described in Fig. 12.1.

Previous algorithms aimed at estimating the parameter θ that maximized the likelihood
of p(x; θ), where x is the vector of observed variables. In the latent variable model, the
probability of the observation xi is obtained by marginalizing out its corresponding latent
variable zi. We thus wish to maximize the probability

max
θ
p(x; θ) =

∑
z

p(x, z; θ).

xi

zi Latent Variable - zi

Observed Variable xi

i = 1...n

Figure 12.1: Latent variable model
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The log likelihood of x given θ is

log(x1:n; θ) = log
(

n∏
i=1

p(xi; θ)
)

(12.1)

=
n∑
i=1

log (p(xi; θ)) (12.2)

=
n∑
i=1

log
(∑

zi

p(xi, zi; θ)
)
. (12.3)

The sum within the logarithm (12.3) gives a multi-modal distribution, hence a multi-
modal optimization problem. This is usually non-convex. Efficiently solving this non-convex
optimization problem was the motivation for the EM algorithm.

Options for MLE in latent variable model.

1. Gradient Ascent on non-concave objective.

2. Expectation Maximization (EM).

Block-coordinate ascent is a maximization technique where we divide all function vari-
ables into groups, or blocks. For two blocks, we iteratively fix the values of the first block
and maximize w.r.t. the second block, then fix the second block and maximize w.r.t. the
first block.

EM is a block-coordinate ascent method on an auxiliary function which lower bounds
log p(x1:n; θ). We attempt to maximize the log-likelihood by maximizing this lower bound
over θ. This has a nice interpretation in terms of filling in the missing data, and also the
auxiliary function is often concave in θ which yields which yields a nicer optimization problem
(and sometimes with closed-form updates). Since we have a distribution over z, the E step
of EM can often be interpreted as filling this missing data with soft values.

E step – Fill z with “soft values”.

M step - Solve the maximization problem w.r.t. θ for the fully observed model.

Comparison with Fisher LDA: We observed x (a Gaussian) and y (the label), and
then we did a maximum log-likelihood with convex optimization. Similarly, the E-step fills
in “missing values”, and the M-step solves the MLE; these steps repeat.

Comparison with K-Mean: We iteratively solved a (hard) E-step which computed the
cluster assignments z, followed by an M-step where we recomputed the cluster centroids µ.
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Figure 12.2: Jensen inequality: Eq[f(z)] ≤ f(Eq[z]) when f is concave.

Jensen’s Inequality for a concave function1 is

Eq[f(z)] ≤ f (Eq[z])

where q is any fixed distribution. This is shown in Fig. 12.2.
Since the logarithm function is concave (see Fig. 12.3), we can use Jensen’s inequality to

simplify the log-likelihood calculation from (12.3):

log
(∑

z

p(x, z)
)

= log
(∑

z

q(z)p(x, z)
q(z)

)
(12.4)

= log
(
Eq
[
p(x, z)
q(z)

])
(12.5)

≥ Eq
[
log

(
p(x, z)
q(z)

)]
(12.6)

=
∑
z

q(z) log ( pθ(x, z) )−
∑
z

q(z) log ( q(z) ) (12.7)

, L(q, θ) (12.8)
, Eq [log( p(x, Z; θ) )]︸ ︷︷ ︸

Expected complete log-likelihood

+ H(q)︸ ︷︷ ︸
Entropy of q

(12.9)

We have log p(x; θ) ≥ L(q, θ) ∀q, θ where q is any distribution over z with bigger support
over z than p(x, z), i.e. p(x, z) 6= 0 =⇒ q(z) 6= 0.2 We thus see that L is the auxiliary
function which lowers bound the log-likelihood, and it depends on both θ and q. From
this formulation, we can iterate the maximization of L(q, θ) with EM by alternating the
maximization of the block of q, and the block of θ.

1f(x) is concave ⇐⇒ −f(x) is convex.
2Our convention in the derivation above is that 0/0 = 0, and we can only allow this when p(x, z) = 0.
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Figure 12.3: The log() function is strictly concave.

EM Algorithm

E step: qt+1 , arg max
q

L(q, θt) (12.10)

=⇒ qt+1(z) =p(z|x; θt) (12.11)
M step: θt+1 , arg max

θ
L(qt+1, θ) (12.12)

= arg max
θ

Eqt+1(z)[log p(x, z; θ)]. (12.13)

The M-step is another maximum likelihood problem, but for complete information! Often
when z is a binary variable, we replace z with Eq[z] is this expression (these are the “soft
values” we were referring to earlier).

We now explain how we can derive the closed form solution for q in the E-step as given
in (12.11). Jensen’s Inequality can be generalized by replacing z by g(z). If we use f(x) =
log(x), then

Eq[ f( g(z) ) ] ≤ f ( Eq[ g(z) ] ) (12.14)
=⇒ log ( Eq[ g(z) ] ) ≥ Eq[ log( g(z) ) ]. (12.15)

It turns out that Jensen’s inequality is a strict inequality when f is strictly concave, unless
the random variable is degenerate. A degenerate distribution means the random variable
has only one possible value. Since the logarithm function is strictly concave (Fig. 12.3), the
Jensen’s inequality will be a strict inequality unless the random variable is degenerate (i.e.
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g(z) is a constant).3 In other words,

g(z) = constant then p(x, z)
q(z) = constant ∀z

=⇒ q(z) ∝ p(x, z)
i.e. q∗(z) = p(z|x; θ)
i.e. arg max

θ
L(q, θt) = p(z|x; θt) and

L(qt+1, θt) = log( p(x; θt) )

Choosing the distribution q∗(z) = p(z|x; θ) maximizes the auxiliary function w.r.t. q and
makes the lower bound tight, i.e.

L(qt+1, θt) = log p(x; θt) ≥ L(q, θt) ∀ q (12.16)
=⇒ qt+1maximizes L(q, θt) w.r.t. q (12.17)

12.1.1 Properties of EM
a) Log likelihood is non-decreasing, i.e. log p(x; θt+1) ≥ log p(x; θt).

Proof: The log likelihood is an upper bound on the auxiliary function.

log p(x; θt+1) ≥ L(qt+1, θt+1)
≥ L(qt+1, θt) (By definition of θt+1 )
= log p(x; θt) (Auxiliary function at (qt+1, θt) gives the log likelihood)

b) Θt in EM converges to a stationary point of log p(x; θ); i.e.,

∇θ log p(x; θ) = 0.

Like K-Means, initialization is crucial. Usually we do multiple random restarts. For GMM,
could use K-Means++ to initialize the means µj.

c) By definition, L(q, θ) = Eq[ log p(x,z;θ)
q(z) ]. Therefore,

log p(x; θ)− L(q, θ) = −Eq
[

log p(x, z; θ)
q(z)p(x; θ))

]

= Eq
[

log q(z)
p(z|x; θ)

]
, KL(q(·)‖p(·|x; θ) (KL Divergence)

3Another possibility is for q to be degenerate. Our derivation assumed that the support of q is including
the one for p, so unless p is degenerate (in which case the sum over z collapsed to only one value and
everything is trivial), then q cannot be degenerate.
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Figure 12.4: EM will iteratively find a parameter that improves the objective function.
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Thus the difference between the log-likelihood and the lower bound at a specific θ is
given by the KL divergence between q and p(·|x; θ) (highlighting again why you can make
the bound tight by letting q = p(·|x; θ)). We will revisit this KL formulation when we will
talk about variational inference. In particular, variational EM replaces the maximization
over all q with the maximization over a simpler subset Q, thus giving an approximation of
the E-step.

12.1.2 Gaussian Mixture Model
In a latent variable model, we have be a pair (xi, zi), i ∈ {1, ..., n} of observed and unobserved
nodes respectively (see Fig. 12.1). Suppose zi ∼ Mult(π) is one-hot encoded, with π =
π1, ..., πk and (xi, |zi = j) ∼ N (µj,Σj). Here we have θ = (π, (µi)ni=1, (Σi)ni=1), x = x1:n,
z = z1:n.

From the latent variable model, we can show that

p(z|x) =
n∏
i=1

p(zi|x) =
n∏
i=1

p(zi|xi).

Complete log-likelihood

log p(x, z; θ) =
n∑
i=1

log p(xi|zi; θ)︸ ︷︷ ︸
Gaussian

+ log p(zi; θ)︸ ︷︷ ︸
Multinouilli


=

n∑
i=1

 k∑
j=1

zij logN (xi|µj,Σj) +
k∑
j=1

zij log πj


Eq[log p(x, z; θ)] =

n∑
i=1

k∑
j=1

Eq[zij](logN (xi|µj,Σj) + log πj)

Eq[zij] = q(zij = 1) [marginal distribution]

During EM, qt+1(z) = p(z|x; θt).
We define the distribution q as weights τij , p(zij = 1|xi; θt) = qt+1(zij = 1).
Compute

qt+1(z) , p(z|x; θt)

=
n∏
i=1

p(zi|xi; θt)

=⇒ qt+1(zi) ∝ p(xi|zi; θt)p(zi; θt)

τ
(t)
ij = qt+1(zij = 1) =

π
(t)
j N (xi|µ(t)

j ,Σ
(t)
j )∑k

j=1 π
(t)
l N (xi|µ(t)

l ,Σ
(t)
l )

(
= p(xi, zij = 1|θ(t))

p(xi|θ(t))

)
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E step: Compute τ (t)
ij for i = 1, ..., n using θ(t).

M step: Compute max{µj ,Σj ,πj}
∑n
i=1

∑k
j=1 τ

(t)
ij [log p(xi|µj,Σj) + log πj].

The M step yields the updated parameters

π̂
(t+1)
j =

∑n
i=1 τ

(t)
ij

n

µ̂
(t+1)
j =

∑n
i=1 τ

(t)
ij xi∑n

i=1 τ
(t)
ij

Σ̂(t+1)
j =

∑n
i=1 τ

(t)
ij (xi − µ̂(t+1)

j )(xi − µ̂(t+1)
j )T∑n

i=1 τ
(t)
ij

Initialize GMM model: e.g.

µ
(0)
j from K-Means++

Σ(0)
j big spherical covarianceΣ(0)

j = σ2︸︷︷︸
big

I

π
(0)
j : proportions from K-means++.

If you execute EM step in GMM with fixed covariance Σj = σ2I, and you let σ2 → 0
 get K-means algorithm!
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