
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 13 — October 16
Lecturer: Simon Lacoste-Julien Scribe: Pravish Sainath

Proofread and quickly corrected by Simon Lacoste-Julien.

13.1 Inference

13.1.1 Motivation
We have seen about different types of probabilistic graphical models, their properties and
how they model probability distributions by encoding the conditional independences. Let
us try to find out how we can put these graphical models to use to answer specific questions
about their distributions.

In many situations, we want to compute the following probabilities from PGMs :

(1) Marginal p(xF) for some F ⊆ V

(2) Conditional p(xF |xE) for query nodes F ⊆ V and evidence nodes E ⊆ V

(3) Partition function (for UGM) (normalization constant)

Z =
∑
xV

∏
Cε C

ψC(xC)

Some situations that require inference

(1) Determining missing data : p(xunobserved|xobserved)
Example : Image infilling task in Computer Vision

(2) Prediction : p(xfuture|xpast)
Example : Prediction of next observation in a sequence / time series

(3) Identifying latent cause : p(xcause|xobservation)
Example : QMR Model (Quick Medical Reference of diseases - symptoms) - identify
presence of a disease from observed symptoms

(4) (Related to inference) Decoding : arg maxxF
p(xF |xE)

Example : Speech Recognition - identifying the best sentence from speech data

13-1

Lecture 13 — October 16 Fall 2018

(5) Inference is also needed sometimes when estimating parameters
Example : When doing MLE in a latent variable model, we need to compute p(z|x)
during the E-step of EM algorithm.

Remark 13.1.1 We will present inference algorithms for only UGMs as they are simpler
and more general. These can be applied to DGMs after converting them to UGMs using
the process of moralization studied in the previous lecture. The joint probability distribution
represented by a DGM can be expressed by an equivalent UGM as follows :

p(x) =
∏
i

p(xi|xπi
)

ymoralization

p(x) = 1
Z

∏
i

ψCi
(xCi

)

where

Z = 1

Ci , {i} ∪ πi
ψCi

(xCi
) , p(xi|xπi

)

13.1.2 Key Idea for graph eliminate algorithm
The main trick to compute the marginalization efficiently is to re-organize the computa-
tion using the distributivity property in a specific order (this will yield the graph eliminate
inference algorithm that we will describe soon)

Distributivity Property

We use the distributivity property to reorganize sum in the probability expression.

By the distributivity of ⊕ over �, it can be stated for any a, b, c that :

c� (a⊕ b) = c� a⊕ c� b

For two functions f ·) and g(·), we have

∑
x1,x2

f(x1)g(x2) =
(∑

x1

f(x1)
)(∑

x2

g(x2)
)

13-2

Lecture 13 — October 16 Fall 2018

More generally, ∑
x1:n

∏
i

fi(xi) =
∏
i

(∑
xi

fi(xi)
)

Suppose that each variables xi can take k values. Using this trick, we have transformed
a sum of kn terms, each including the product of n values (and thus O(kn · n) complexity)
to a product of n terms, each which is a sum over k terms, thus a complexity of O(k · n)!
We now see how to generalize this idea to more complicated potentials.

13.1.3 Graph Elimination Algorithm (for inference)
The graph eliminate algorithm uses the idea of ditributivity to successively eliminate vari-
ables (i.e. summing over their values) and infer the marginal probability of the query. This
is called the Variable Elimination (VE) or the Graph Eliminate (GE) algorithm.

We present the formal procedure for the Graph Eliminate (GE) algorithm to compute
the marginal probability p(xF) of the given query corresponding to the set of nodes F from
the UGM G with set of cliques C.

Initialize

(a) Choose an elimination ordering such that the nodes in F are the last nodes.

(b) Put all the terms ψC(xC) in an active list

Update

(c) Repeat in the order of variables to eliminate :
Pick the variable xi to eliminate from the active list.

(1) Remove all factors from active list that contains xi as argument and take their
product.

i.e.
∏

α s.t. i ε α
ψα(xα)

(2) Sum the product over the variable xi to get a new factormi(xSi
) where Si contains

all the variables in the factors except i

i.e. mi(xSi
) ,

∑
xi

∏
α

ψα(xα)︸ ︷︷ ︸
new clique to sum over

Si ,

(⋃
α s.t. i ε α

α

)∖
{i}

(3) Put back mi(xSi
) in the active list (call it ψSi

(xSi
) for consistency of notation).

13-3

Lecture 13 — October 16 Fall 2018

Normalize

(d) Last factors left have only xF terms.
The required probability p(xF) is proportional to this and needs to be normalized to
obtain the final value.

13.1.4 Illustrating example
We want to compute the probability distribution p(x4) from the UGM whose graph is given
in Figure 13.1.

2 1

4 3

Figure 13.1: Graph G

Writing the joint distribution factorized by the UGM,

p(x1, x2, x3, x4) = 1
Z
ψ(x1, x2).ψ(x1, x3).ψ(x3, x4).ψ(x2, x4)

The required probability p(x4) can be expressed as a marginal of the joint probability by
summing over the remaining variables,

=⇒ p(x4) = 1
Z

∑
x1,x2,x3

ψ(x1, x2).ψ(x1, x3).ψ(x3, x4).ψ(x2, x4)

=⇒ p(x4) = 1
Z

∑
x1

∑
x2

∑
x3

ψ(x1, x2).ψ(x1, x3).ψ(x3, x4).ψ(x2, x4)

Splitting the summation by the distributive property,

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3)
∑
x2

ψ(x2, x4)
∑
x1

ψ(x1, x2).ψ(x1, x3)

Let us choose an elimination ordering : 1→ 2→ 3→ 4

All the factors ψ are currently in the active list.

13-4

Lecture 13 — October 16 Fall 2018

Successively applying the updates in the chosen order, m messages are added to the
active list, removing the factors containing the eliminated variables.

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3)
∑
x2

ψ(x2, x4)
∑
x1

ψ(x1, x2).ψ(x1, x3)︸ ︷︷ ︸
m1(x2,x3)

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3)
∑
x2

ψ(x2, x4).m1(x2, x3)

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3)
∑
x2

ψ(x2, x4).m1(x2, x3)︸ ︷︷ ︸
m2(x3,x4)

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3).m2(x3, x4)

=⇒ p(x4) = 1
Z

∑
x3

ψ(x4, x3)m2(x3, x4)︸ ︷︷ ︸
m3(x4)

=⇒ p(x4) = 1
Z
m3(x4)

As p(x4) is a probability distribution and it is proportional to the message m3(x4), Z can
be computed as :

Z =
∑
x4

m3(x4)

The GE algorithm modifies the original graph by consecutively removing nodes and
passing messages to the other nodes that lead up to the query node 4 as shown in Figure
13.2

Figure 13.2: Graph G with the computed messages

13-5

Lecture 13 — October 16 Fall 2018

13.1.5 Properties of the Graph Eliminate Algorithm
Memory Cost

(Suppose for simplicity that each xi can take 2 values (i.e. k = 2)) The memory cost can
be expressed in terms of the number of active variables at each stage Si and the number of
factors in the active list :

≈ 2maxi |Si| · (#factors)

Computational Cost

It can be expressed in terms of the number of active variables at each stage Si and the
number of nodes n in the graph :

≈ 2maxi |Si|+1 · n

Augmented Graph is Triangulated!

It can be observed that new cliques are formed as side effects while running the GE algo-
rithm. Running the algorithm, keeping track of all the edges added in between yields an
augmented graph that has the property of being a triangulated graph.

Figure 13.3: Left: Non-triangulated graph Right: Triangulated graph

A chord is an edge between two non-neighboring nodes in a cycle. Definition: A trian-
gulated graph is a graph with no cycle of size 4 or more that cannot be broken by a chord.
In other words, any cycle of size or 4 can be broken by a chord in a triangulated graph, as
illustrated in Figure 13.3.

During the graph eliminate algorithm, new edges are added, and it turns out that enough
edges are added to ensure that the resulting augmented graph is triangulated. See an ex-
ample in Figure 13.4. Here, the black lines indicate the original edges and the blue lines
indicate the edges introduced by the GE algorithm during elimination.

13-6

Lecture 13 — October 16 Fall 2018

5 4 2

F 3 1

Figure 13.4: Augmented graph after Graph Eliminate

Treewidth of a graph

For an undirected graph G, its treewidth is defined as :

treewidth , min
over all elimination orderings

{size of biggest clique− 1}

The “minus one” convention is so that the treewidth of a tree is 1 :

treewidth(tree) = 1

• Both memory and running time of the GE algorithm are determined by the number of
variables in the largest elimination clique i.e. the term 2(size of biggest clique+1)

For the GE algorithm to be tractable, we need to achieve an ordering giving minimum
size of the largest clique which is the treewidth

∴ Best ordering gives the term ≈ 2(treewidth+ 2) in the complexities.

• Not all orderings are good.

Example :
Removing the central node in the (n+ 1)-node star graph gives a large clique of size n
leading to a very big factor in the active list which is not computationally efficient as
seen in Figure 13.5.
Whereas, removing the leaf nodes gives cliques of size 2, consistent with its treewidth
of 1.

Bad News about inference in UGM

(a) It is actually NP-hard to compute the treewidth of a graph (or to find the best elimi-
nation ordering).

13-7

Lecture 13 — October 16 Fall 2018

Figure 13.5: Bad ordering in a star graph

(b) It is NP-hard to do exact inference in general.
We thus instead need to use approximate inference methods in general.

Example : The treewidth of a grid graph with |V | nodes is actually growing with the
side of the grid ≈

√
|V | shown in Figure 13.6. We’ll see later that Ising models are

popular models in computer vision, and they often have this grid structure. In later
lectures, we will show how to do approximate inference in such UGM using Gibbs
sampling or a variational method (mean field). These terms will be defined in later
lectures.

Figure 13.6: Grid graph with |V | vertices

Good News about inference in UGM

(a) Inference in linear time (|V |+ |E|) for graphs that are trees (treewidth = 1).

Sum-Product algorithm can be derived for trees like Hidden Markov Models(HMM)
and Markov chains.

(b) Efficient for small treewidth graphs.

For general graphs, Junction Tree algorithm is used.

13-8

	Inference
	Motivation
	Key Idea for graph eliminate algorithm
	Graph Elimination Algorithm (for inference)
	Illustrating example
	Properties of the Graph Eliminate Algorithm

