
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 16 — November 2
Lecturer: Simon Lacoste-Julien Scribe: Tapopriya Majumdar

Disclaimer: Lightly proofread and quickly corrected by Simon Lacoste-Julien.

16.1 Information Theory

16.1.1 Kullback–Leibler (KL) Divergence
For discrete distributions p and q, the KL divergence between p and q is defined to be

DKL(p || q) ∆=
∑
x∈Ω

p(x) log p(x)
q(x) = Ep

[
log p(x)

q(x)

]
(16.1)

Motivation from density estimation

Let q̂ be an estimation of the given distribution. Recall the statistical decision theory setting.
The standard (Maximal Likelihood) loss is the log-loss, giving the following statistical loss
when the true distribution is pθ for action q̂:

L(pθ, q̂) ∆= EX∼pθ [− log q̂(X)] (16.2)

Note that above is called the cross-entropy. If we use the best action q̂ = pθ, then we get
the loss to be

−
∑
x∈Ω

pθ(x) log pθ(x) = H(pθ), (16.3)

the entropy of pθ (which is obviously the best we can do, as we are outputting the correct
distribution). Therefore, the excess loss in this case is

L(p, q̂)−min
q
L(p, q) = L(p, q̂)− L(p, p)

= −
∑
x∈Ω

p(x) log q̂(x)
p(x)

= DKL(p || q̂)

So the KL divergence can be interpreted as the excess log-loss we get by outputting q̂
instead of the true distribution p.
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Motivation from coding theory

We use the fact that in coding theory, the optimal length of a code is proportional to
− log2 p(x) bits. Then the expected length of the code is ∑x p(x)(− log2 p(x)), where the
entropy is measured in bits.1 Then the KL divergence can be interpreted as the excess cost
(in terms of length of code) to use a distribution q for coding as opposed to the optimal
distribution p.

16.1.2 Examples
Example 16.1.1 (Entropy of a Bernoulli distribution)
Let X ∼ Bern(p). Then

H(X) = −p log p− (1− p) log(1− p), (16.4)

which is largest when p = 1/2.

Example 16.1.2 (Entropy of a uniform distribution on K states)
Let X ∼ Uniform({x1, . . . , xK}. Then

H(X) = −
K∑
i=1

1
K

log 1
K

= logK (16.5)

It turns out that the uniform distribution on K states is the one with maximum entropy,
among all distributions over K states.

16.1.3 Properties
1. DKL(p || q) > 0. This can be shown using Jensen’s equality.

2. It is strictly convex in each argument.

3. It is not symmetric: DKL(p || q) 6= DKL(q || p).

4. DKL(p || p) = 0 ∀p and DKL(p || q) > 0 when p 6= q.

16.1.4 Maximal Likelihood and KL Minimization
Let {pθ}θ∈Θ be a parametric family of distributions, and p̂n(x) ∆= 1

n

∑n
i=1 δ

(
x, x(i)

)
be the

empirical distribution corresponding to n samples. Then

ML for θ ⇐⇒ min
θ∈Θ

DKL(p̂n || pθ). (16.6)
1When using log in the natural base, the entropy is measured in nats, when using log2, it is measured in

bits.
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Proof

DKL(p̂n || pθ) =
∑
x∈Ω

p̂n(x) log p̂n(x)
pθ(x)

= H(p̂n)−
∑
x∈Ω

p̂n log pθ(x)

= H(p̂n)− 1
n

∑
x∈Ω

n∑
i=1

δ
(
x, x(i)

)
log pθ(x)

= H(p̂n)− 1
n

n∑
i=1

log pθ
(
x(i)

)
= constant− 1

n
log

n∏
i=1

pθ
(
x(i)

)
.

16.2 Maximum Entropy Principle
Here the idea is to consider some subset of distributions over X according to some data-
driven constraint, i.e. a subsetM⊆ ∆|X |. The principle is to pick p̂ ∈M which maximizes
the entropy:

p̂ = argmaxq∈MH(q)
= argminq∈MDKL(q || uniform),

as DKL(q || uniform) = −H(q) + constant.
More generally, we can also consider the generalized maximum entropy principle where

we do: arg minq∈MDKL(q ||h0), for some distribution h0 that we want to favor (instead of
the uniform, which is used for the standard maximum entropy). We’ll see soon the role of
this h0 when we talk about the equivalence of maximum entropy with maximum likelihood
in the exponential family.

Example 16.2.1 (from Wainwright) If we observe pL = 3/4 kangaroos are left-handed
and pB = 2/3 kangaroos drink Labatt beer, then how many kangaroos are both left-handed and
drink Labatt beer? (Here the max. entropy solution is that p(B,L) = pB ·pL, by independence)

16.2.1 How do we get M?
A standard way to get M is through empirical “moments”: let the feature functions be
T1(x), . . . , Td(x) – the represent various measurements we want to make on the data. Then
define M ∆= {q : Eq[Tj(x)] = Ep̂n [Tj(x)]∀ j = 1, . . . , d}, that is, the set of distributions
for which their model moments match the empirical moments. If we let αj , Ep̂n [Tj(x)].
Then the constraint becomes ∑x q(x)Tj(x) = αj (some scalar), i.e. 〈q, Tj〉 = αj (it’s a linear
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equality on q, when it is represented as a vector over |X | elements). Hence, finding q using
Maximal Entropy

min
q∈R|X|

DKL(q || uniform) such that q ∈M∩∆|X |

becomes a convex optimization problem over q ∈ ∆|X | ⊆ R|X |.

16.2.2 Lagrangian duality segue
Let f, fj, j = 1, . . . ,m be convex functions and gk, k = 1, . . . , n be affine functions. Here
these functions are extended real-valued functions, e.g. f : Rd → R ∪ {∞}. then dom(f) ,
{x : f(x) <∞}. The primal convex optimization problem is:

minimizexf(x)
such that fj(x) 6 0 ∀j

and gk(x) = 0∀k

We define
L(x, λ, ν) ∆= f(x) +

m∑
j=1

λjfj(x) +
n∑
k=1

νkgk(x),

where λj and νk are Langrange multipliers. We will now present the saddle point interpre-
tation of the Lagrangian duality. It uses the following trick:

h(x) , sup
λ>0
ν

f(x, λ, ν) =

f(x) if x is feasible
+∞ if x is not feasible

(16.7)

so an equivalent problem to the (constrained) primal problem is the following (unconstrained)
problem using the fancy complicated function h(x):

inf
x

(
sup
λ>0
ν

f(x, λ, ν)

︸ ︷︷ ︸
h(x)

)
. (16.8)

The duality trick is to swap inf and sup:

sup
λ>0
ν

(
inf
x
f(x, λ, ν)

)
. (16.9)

Lagrangian dual problem

Let infx f(x, λ, ν) ∆= g(λ, ν), so that g is always concave in both components. The Lagrangian
dual problem is to solve

sup
λ>0
ν

g(λ, ν). (16.10)
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The weak duality
sup
λ>0
ν

inf
x
f(x, λ, ν) 6 inf

x
sup
λ>0
ν

f(x, λ, ν)

is always true (because sup inf ≤ inf sup always). Let p∗ ∆= {infx f(x) : x feasible}. Then
g(λ, ν) 6 p∗ ∀λ > 0, ν. The strong duality is when we have equality, i.e.

d∗ = sup
λ>0
ν

g(λ, ν) = p∗. (16.11)

When the primal optimization problem is convex, a sufficient condition for strong duality is
Slater’s condition:2 ∃x ∈ int(dom(f)) such that fj(x) < 0 ∀ j where fj is nonlinear and x
is feasible. See the Chapter 5 in Boyd’s book http://stanford.edu/~boyd/cvxbook/ for
more details.

Note that after solving the dual problem and obtaining λ∗, ν∗, one can usually recon-
struct the primal optimal variables x∗(λ∗, ν∗) (when strong duality holds) using the KKT
conditions, which are a set of necessary non-linear equations that hold for the primal and
dual optimal variables.

16.3 Dual Problem for Maximal Entropy

Let u be the uniform distribution on X . Let ∆|X | ∆= {q : q(x) > 0∀x,∑x q(x) = 1} and
M ∆= {q ∈ ∆|X | : ∑x q(x)Tj(x) = αj ∀ j}. Then the primal form of the maximal entropy
problem is to find

min
q∈M

∑
x

q(x) log q(x)
u(x) (16.12)

As we did in the lecture on deriving the maximum likelihood parameter for the multinouilli,
we will ignore the inequality constraints on q (q(x) ≥ 0), as the KL divergence is essentially
acting as a barrier function making sure that q stays positive. So we only form the Lagrangian
with ν for the moment equality constraints, and we use a separate Lagrange multiplier c for
the sum-to-one equality constraint, as we’ll see later that we will treat it differently.

We thus introduce the corresponding Lagrangian

L(q, ν, c) =
∑
x

q(x) log q(x)
u(x) +

∑
j

νj (αj − Eq[Tj(x)]) + c

(
1−

∑
x

q(x)
)

To get the dual function, we need to minimize the Lagrangian with respect to q (it is convex
in q, so we just need to find its zero gradient):

We have, ∂L
∂q(x) = 1 + log q(x)

u(x) −
∑
j

νjTj(x)− c

2This is an example of constraint qualification condition; there are others.
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So

∂L
∂q(x) = 0 ⇐⇒ log q

∗(x)
u(x) = 〈ν, T 〉+ c− 1

⇐⇒ q∗ν,c(x) = u(x) exp (〈ν, T 〉+ c− 1) ,

so that q∗ is part of the exponential family of distributions!

Dual Function

Plugging in this value of q∗ in L, (we use the (abused) shorthand notation Eq∗ below to
denote ∑x q

∗(x) even though q∗ is not necessarily normalized):

g(ν, c) = L(q∗ν,c, ν, c)
= Eq∗ [〈ν, T (x)〉+ c− 1] + 〈ν, α〉 − Eq∗ [〈ν, T (x)〉] + c− Eq∗ [c]
= 〈ν, α〉+ c− Eq∗ [1]
= 〈ν, α〉+ c−

∑
x

u(x) exp (〈ν, T (x)〉) exp(c− 1)

= 〈ν, α〉+ c− Z(ν) exp(c− 1),

where Z(ν) ∆= ∑
x u(x) exp (〈ν, T (x)〉). Therefore,

∂g

∂c
= 1− Z(ν) exp(c− 1).

To maximize g(ν, c) with respect to c,

∂g

∂c
= 0 ⇐⇒ 1− Z(ν) exp(c∗ − 1) = 0

⇐⇒ exp(c∗ − 1) = 1
Z(ν)

Plugging back c∗, we get

max
c
g(ν, c) = 〈ν, α〉+ c∗ − Z(ν) exp(c∗ − 1)

= 〈ν, α〉+ c∗ − Z(ν) 1
Z(ν)

= 〈ν, α〉+ c∗ − 1
= 〈ν, α〉+ logZ(ν)
∆= g̃(ν)

By eliminating c from the dual problem, we ensure that q∗ν,c∗ is normalized (which is why we
treated it differently). g̃ is the corresponding objective for the remaining dual problem. We
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now re-interpret this dual problem and link it with maximum likelihood for the exponential
family.

If α = 1
n

∑
i T

(
x(i)

)
= Ep̂n [T (x)], then

g̃(ν) = 1
n

n∑
i=1

[
〈ν, T

(
x(i)

)
〉 − log(Z(ν)

]
= 1

n

n∑
i=1

log p
(
x(i)|ν

)
,

where p(x|ν) ∆= u(x) exp (〈ν, T (x)〉 − logZ(ν)). Then the dual problem is

max
ν

g̃(ν) = max
ν

1
n

log p
(
x(1):(n)|ν

)
,

which is the same as the maximal likelihood estimate!
To summarize, maximal likelihood in the exponential family with T (x) as the sufficient

statistics is equivalent to the maximal entropy problem with moment constraints on T (x),
where α = Ep̂n [T (x)]. They are Lagrangian dual of one another:

MLE in exponential family ⇐⇒ maximum entropy with moment constraints

Note moreover that if we use the generalized maximum entropy principle arg minq∈MDKL(q ||h0)
with h0 instead of the uniform, then we get an exponential family with h0(x) as the reference
density instead of the uniform distribution!

Remark 16.3.1

∇ν logZ(ν) = 1
Z(ν)∇ν

∑
x

u(x) exp(〈ν, T (x)〉)

=
∑
x

1
Z(ν)T (x)u(x) exp(〈ν, T (x)〉)

=
∑
x

p(x|ν)T (x)

= Ep(x|ν)[T (x)]
∆= µ(ν), the “model moment”

Therefore,

∇ν g̃(ν) = Ep̂n [T (x)]− µ(ν)
∆= µ̂n − µ(ν),

where µ̂n is the “empirical moment”. We note that

∇ν g̃(ν) = 0⇒ µ(ν∗) = µ̂n,

i.e. the maximal likelihood parameters in the exponential family are also doing moment
matching (which is expected by the equivalence above).
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So in the case of the exponential family, we have that maximum likelihood is equivalent
to maximum entropy which is equivalent to moment matching. For other parametric fam-
ilies (mixture models for example, which are not in the exponential family), then moment
matching could give a different estimator than maximum likelihood.
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