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Lecture 19 — November 12
Lecturer: Simon Lacoste-Julien Scribe: Jarrid Rector-Brooks, Mohammad-Hadi Sotoudeh

Disclaimer: These notes have only been lightly proofread.

19.1 Exponential Families
Despite often looking very different in regards to their forms, many of the probability distri-
butions we’ve encountered thus far in class are actually families of distributions, and more
specifically they are families we call an Exponential Family. We may find it more natural
at first to use the more familiar definitions of the distributions. However, we will see that
the form of the exponential family indeed provides us an simple and natural way to manip-
ulate the distributions. Often, it will be easier for us to work within the framework of the
exponential family than with the specific definition of the distribution itself.

19.1.1 Definitions
We’ll begin with some preliminaries, and then move to more central definitions. Assume we
have some distribution defined on a space X .

Definition 19.1 A statistic is any function ϕ defined on a random variable X.

Definition 19.2 A statistic T (X) is a sufficient statistic for a parametric distribution
pθ defined on X if θ is conditionally independent of X given T (X), i.e.,

θ⊥⊥X | T (X)

Note that the above definition of a sufficient statistic assumes a Bayesian point of view
where we view θ itself is a random variable. Effectively, this definition says that there’s
no additional information in the observed data X for us to infer anything about θ than
what is in T (X). One may view sufficient statistics from a frequentist point of view as well,
and their equivalence is shown in the Fisher-Neyman factorization theorem.1 We will use
sufficient statistics to help us define exponential families.

Definition 19.3 Let X be a random variable on X . An exponential family is a para-
metric family of distributions of the form

p(x; θ)dµ(x) = h(x) exp
{
b(θ)TT (x) − A(θ)

}
dµ(x) (19.1)

where
1https://en.wikipedia.org/wiki/Sufficient_statistic#Fisher-Neyman_factorization_

theorem
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1. h(x)dµ(x) is the reference measure. It allows us to ensure that any observation
x is in the correct space. In particular, dµ(x) is termed the base measure and can
be the Lebesgue measure in the case of a continuous R.V., or a counting measure for
a discrete R.V.. h(x) is the reference density. It has no constraints besides being
non-negative2.

2. T (x) is the sufficient statistic, as defined above.

3. η = b(θ) is a parameter vector, termed the canonical parameter of the family

4. θ is the parameter of the family. However, we will usually end up working with η,
not θ (as discussed below, many families have that η = θ and so the θ disappears
altogether).

5. A(θ) is the log-partition function that ensures the density is normalized to 1. This
is also often called the log-normalization or cumulant generating function. This
is a very important function and it will make our lives much easier. E.g., successive
gradients of this function yield cumulants of the family (this is why A(θ) is sometimes
called the cumulant generating function).

It is useful to note here that the exponential family does not refer to only one family of
distributions. Instead, there are many different exponential families. Each family may be
defined by choosing a form for the reference density h(x) and the sufficient statistics T (x), as
well as the image of X — ΩX . Then the members of this exponential family will be indexed
by the valid values of the parameter θ.

Remark 19.1.1 If ΩX is discrete, then p(x; η) is a probability mass function. For continu-
ous ΩX , p(x; η) is a probability density function.

We continue now with more definitions.

Definition 19.4 A canonical exponential family is an exponential family where θ =
b(θ) = η. This allows us to write the density as

p(x; η) = h(x) exp
{
ηTT (x) − A(η)

}
dµ(x) (19.2)

Definition 19.5 The domain of an exponential family is the set of canonical parameters
Ω for which the log-partition function is finite, i.e.,

Ω = {η ∈ Rp : A(η) < ∞}
2If curious, the following post on mathexchange may be of use in understanding

the reference measure more fully: https://math.stackexchange.com/questions/1489330/
effect-of-the-measure-on-an-exponential-family
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Definition 19.6 A minimal exponential family is an exponential family whose sufficient
statistic vector T (x) is linearly independent.

From here on out we’ll assume that we are working with a canonical exponential family
and make use of the canonical parameter η. Now, given what we’ve discussed so far we can
now take a closer look at the form of our log-partition function A(η).

Proposition 19.7 We will show that A(η) is indeed the log-partition3 function, i.e., that

A(η) = log
∫

X
h(x) exp

{
ηTT (x)

}
dµ(x) (19.3)

Proof From the definition of an exponential family we have that

1 =
∫

X
p(x; η)dµ(x)

= e−A(η)
∫

X
exp

{
ηTT (x)

}
dµ(x)

This leads us immediately to our desired result.

Note that any single distribution p(x) may be put trivially into an exponential family
by letting h(x) = p(x) and using η = 0 for any T (x). Thus it does not make sense to say
that a single distribution is in the exponential family or not. All we can talk meaningfully
about is whether a family of distributions can be an exponential family or not (see below for
examples of families which are not exponential families).

19.1.2 Flat vs Canonical Exponential Families
We will see later that derivatives of the log-partition function A(η) yield sequential cumulants
of the distribution itself. In particular, we will see that the second derivative of A(η), ∂2A(η)

∂η2 ,
turns out to be the variance of the distributions in the family. We’ve seen in earlier lectures
that the variance is non-negative, which implies that ∂2A(η)

∂η2 ≥ 0, and A(η) is convex. As the
domain of the family Ω is defined by the finite elements of Rp according to A(·), we have
that Ω itself is a convex set.

We now proceed with definitions of flat and canonical exponential families.

Definition 19.8 A flat exponential family is an exponential family whose domain Ω is
convex.

3The terminology of partition function has its roots in statistical mechanics. It refers, gen-
erally, to the normalization constant of a probability distribution. For further context on
this terminology, see https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
#Connection_to_probability_theory
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Let us consider a reparameterization of a subset of a flat family by defining a new trans-
formation η : Θ → Ω. η is our new parameterization function, and it maps from the new
parameter space Θ to the domain of the family Ω. Using such a parameterization, we end
up with

p(x; θ) ≜ p(x; η(θ)) ∀θ ∈ Θ

We are now ready to define curved exponential families.

Definition 19.9 Let η : Θ → Ω be a function mapping a new parameter space Θ to the
domain of a family Ω. A curved exponential family is an exponential family for which η(Θ)
yields a curved manifold in Ω.

To see an example we could look to a Gaussian parameterized as N (µ, µ2). If we plotted
with µ on the x-axis and σ2 on the y-axis for this family of distributions, we would get a
parabola. This indicates a curved manifold in Ω, and as such a curved exponential family.
(Note that the canonical parameter for a 1d-Gaussian is the precision, i.e. the inverse
variance, but this would not change the fact that η(Θ) is still a curved manifold in this case)

19.1.3 Examples of Families which are not Exponential Families
Before proceeding further, we provide a few examples of families of distributions which turn
out not to be exponential. First, although products of exponential families turn out to be
exponential families, the same cannot be said for mixtures of exponential families. Take a
mixture of two exponential families, we have (with 0 ≤ α ≤ 1)

αh1(x) exp
(
ηT

1 T1(x) − A1(η1)
)

+ (1 − α)h2(x) exp
(
ηT

2 T2(x) − A2(η2)
)

This generally cannot be factorized into a new family of the form h3(x) exp
(
ηT

3 T3(x) − A3(η3)
)
.

A classic example of this is the mixture of gaussian distributions.
Another example of a family of distributions not in the exponential family is the continu-

ous uniform distribution Uniform(0, θ). To see this, observe that for any exponential family,
the support of distributions of the family must be defined only in terms of h(x). Recall that
the density of a distribution in a (canonical) exponential family is h(x) exp

{
ηTT (x) − A(η)

}
.

Since the exponential function is generally non-zero, the support of a distribution in an ex-
ponential family must necessarily be defined as supp(p) = {x : h(x) > 0}. However, for
Uniform(0, θ) the support depends on the parameter θ which contradicts our requirement
for exponential families. Hence Uniform(0, θ) is not an exponential family.

19.1.4 Properties of A(η)
As mentioned before A(η) is often called the cumulant generating function. This is because
successive derivatives of A(η) yield respectively ordered cumulants of the distribution. We’ll
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first prove that the first derivative of the log-partition function is the first cumulant – the
mean, i.e., A(η) = Ep(x;η)[T (x)]. We have the following

∇ηA(η) = ∂A(η)
∂η

= ∂

∂η

(
log

∫
exp

{
ηTT (x)

}
h(x)dµ(x)

)

=
∫
T (x) exp{ηTT (x)}h(x)dµ(x)∫

exp{ηTT (x)}h(x)dµ(x)

=
∫
T (x) exp

{
ηTT (x) − A(η)

}
h(x)dµ(x)

= Ep(x;η)[T (x)]

We can follow a similar line of reasoning to show that the second derivative of A(η) is
equal to the distribution’s second cumulant – the variance.

∂2A

∂η2 =
∫
T (x) exp{ηTT (x) − A(η)}(T (x) − a′(η))h(x)dµ(x)

=
∫
T (x) exp{ηTT (x) − A(η)}(T (x) − Ep(x;η)[T (x)])h(x)dµ(x)

=
∫
T (x)2 exp{ηTT (x) − A(η)}h(x)dµ(x) − Ep(x;η)[T (x)]

∫
T (x) exp{ηTT (x) − A(η)}h(x)dµ(x)

= Ep(x;η)[T (x)2] − Ep(x;η)[T (x)]2

= V arp(x;η)[T (x)]

Further derivates of A will lead to further cumulants. The third derivative will yield the
third central moment, and so on (though, it’s useful to note that further cumulants for n > 3
don’t necessarily equal the nth central moment).

As we mentioned before, the above result means that A(η) is convex (as if the second
derivative of a function is non-negative, then the function is convex, and the variance is
non-negative). Since Ω = {η : A(η) < ∞}, we also have that Ω is convex.

Given the above results, we call the define the gradient of A as

∇ηA(η) = Ep(x;η)[T (x)] ≜ µ(η)

µ(η) exists for η in the interior of Ω, and we call µ(η) the moment vector. It turns out, as
well, that the hessian of A is the covariance of T (x). The proof of this is left as an exercise
to the reader, but the final result shows that(

∂2A(η)
∂ηi∂ηj

)
i,j

= Ep(x;η)
[
(T (x) − µ(η))(T (x) − µ(η))T

]
= Cov(T (x))
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Note that, for exponential families, the moment matching estimate is not always equiva-
lent to the maximum likelihood estimate (it’s only equivalent when you use the T (x) for the
moments). For example, consider the gamma distribution Γ(α, β). The sufficient statistic

for this distribution is T (x) =
[
log x
x

]
. Running moment matching with T̃ (x) =

[
x
x2

]
will

end up giving a different estimate than would maximum likelihood.

19.1.5 Examples of Families which are Exponential Families
To illustrate our definition of an exponential family more clearly, we’ll now show some
examples of families which are exponential families.

Example 19.1.1 Multinoulli Distribution

Let X be a random variable distributed as X ∼ Multinoulli(π). We have that X = {0, 1}k,
and that the sample space ΩX is the set of one-hot encodings, i.e., ΩX = ∆k ∩ X . We have
that π ∈ ∆k and that πi ≥ 0 ∀i. We will view π as our parameter for the exponential family
θ and try to factorize the family according to the exponential family form. To do so, we’ll
use the trick of applying the exponential to the logarithm of the likelihood. This trick turns
out to be widely applicable when trying to show that a family is an exponential family, and
it’ll turn out to be so here. Let’s jump in,

p(x; π) =
k∏

j=1
π

xj

j

= exp
 k∑

j=1
xj log πj


= exp

 k∑
j=1

xj log πj

− 0


From this, we can effectively read off the values for h(x), η, T (x), dµ(x), and A(η). We
find that

1. ηj(π) = log πj

2. T (x) = x

3. dµ(x) is the counting measure on X

4. h(x) = 1 {x ∈ ΩX} = 1 {x ∈ ∆k ∩ X }

5. A(η(π)) = 0 ∀π ∈ Θ
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At first glance this looks great! But if we look closer, we see that A(η(π)) = 0, which
is rather bad news as we know that successive derivatives of A(η(π)) yield the moments for
distributions in this family. A(η(π)) = 0 suggests that all the moments of the distributions
are 0 as well! This doesn’t quite feel right. Perhaps we can refactorize the distribution
another way such that A(η(π)) ̸= 0.

Observe that Θ = Int(∆k) where Int(·) is denotes the interior of a space. This means
that Θ is of dimension k − 1, that η(Θ) is of dimension k − 1, and ΩX is of dimension
k. Recalling our definition of a minimal exponential family, we can see that one dimension
of our sufficient statistics will be linearly dependent and as such we do not have a minimal
exponential family. Indeed, for any x such that h(x) > 0 we can write Tk(x) = 1−∑k−1

j=1 Tj(x).
This suggests that we could reparameterize one of the sufficient statistics Tj(x) in terms of
all the other Ti(x)s.t.i ̸= j. So this means that there are multiple η’s which give rise to the
exact same distribution (in particular, η + α1 for any α yields the same distribution as η).
Given this, we can see that a less redundant sufficient statistic is

T (x) =


x1
...

xk−1


Further, the partition function Z(η) is

Z(η) =
∑

x∈ΩX

exp
(
ηTT (x)

)
=

k−1∑
j=1

exp (ηj) + 1

This allows us to write the likelihood p(x; η) as

p(x; η) = exp


k−1∑
j=1

ηjxj − log
1 +

k−1∑
j=1

eηj

 (19.4)

This shows us that A(η) = log
(
1 +∑k−1

j=1 e
ηj

)
. This gives us our minimal exponential

family.
Let’s verify that this formulation is correct. Recall that the first derivative of A(η) yields

the first moment of the family of distributions, i.e., ∇A(η) = Ep(x;η)[T (x)] for η ∈ Int(Ω).
We have that

∂A

∂ηj

= 1
z(η)e

ηj

= p(x = j | η)
= Ep(x;η)[Tj(x)]

as desired.

Example 19.1.2 1-D Gaussian:
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Consider X ∼ N (µ, σ2), X = R. Here θ = (µ, σ2) (“moment parameterization”).

p(x; (µ, σ2)) = 1√
2πσ2

exp
(

− (x− µ)2

2σ2

)
(19.5)

= exp
(

− x2

2
[ 1
σ2

]
+ x

[ µ
σ2

]
−
[ µ2

2σ2 + 1
2 log(2πσ2)

])
(19.6)

(19.7)

Drawing parallels with the exponential family equation 19.3, we get:

T (x) =
[

x
−x2/2

]
, η(θ) =

[
µ/σ2

1/σ2

]
=
[
η1
η2

]
(19.8)

Here, η2 = 1
σ2 > 0 (precision), and η1 = η2µ. The domain is Ω = {(η1, η2) : η2 > 0, η1 ∈ R}.

Further, h(x) = 1 (although some people use h(x) = 1√
2π

for the Gaussian).

Example 19.1.3 Multivariate Gaussian:

Now consider X ∼ N (µ,Σ), X = Rd. Here θ = (µ,Σ).

p(x; θ = (µ,Σ)) = 1√
2π|Σ|

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
(19.9)

= exp
(

− 1
2x⊤Σ−1x + x⊤Σ−1µ −

[1
2µ⊤Σ−1µ + 1

2 log(2π|Σ|)
])

(19.10)

= exp
(

tr
(〈

Σ−1,−x⊤x

2

〉)
+ x⊤Σ−1µ −

[1
2µ⊤Σ−1µ + 1

2 log(2π|Σ|)
])

(19.11)
(19.12)

Similar to the 1-D Gaussian example, here we can consider

Λ = Σ−1 (precision)
η = Λµ = Σ−1µ

T (x) =
[

x
−xx⊤/2

]

Example 19.1.4 Discrete UGM

Let p ∈ L(G), (G is an undirected graph), with the potential functions ψC(xC) > 0 ∀ C, xC ,
where C denotes cliques in G and xC denotes a particular assignment of values to the
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variables in clique C. Define XC := {(yi)i∈C : s.t. y ∈ X } =×i∈C
Xi, which is the set of all

possible (joint) assignments of values to the variables in clique C.

p(x) = 1
Z

∏
C ∈ C

ψC(xC) = exp
( ∑

C ∈ C
log ψC(xC) − logZ

)
(19.13)

= exp
 ∑

C ∈ C

∑
yC∈XC

1{yC = xC}log ψC(xC) − logZ

 (19.14)

So, T (x) =


...

1{xC = yC}
...

 and η(θ) =


...

log ψC(xC)
...

. Thus, the sufficient statistics is

denoted by TC,yC
(x) and the canonical parameter for it is ηC,yC

, where C ∈ C and yC ∈ XC .
Of course, A(η) = log Z as well. Note that this is not a minimal representation.

Remark 19.1.2 Multinoulli(π) is a special case where G is the complete graph (hence,
there is one single clique). Note that K (the number of possible values for the multinouilli)
is exponential in the size of the graph in a UGM (for example if each variable is binary,
K = 2|V |).

Remark 19.1.3 Feature perspective: Instead of using all indicators 1{yC = xC}, only a
relevant subset could be chosen based on the task at hand. For example, consider modelling
a sentence as x, where xi denote words in the sentence. Usually the vocabulary size is huge
(let’s say 50000). Thus, all possible assignments in a complete graph (nodes being words) is
clearly intractable (even though it can be represented as a single huge clique for exponential
family representation, message passing over UGM is intractable). One possibility is take
(consecutive) word pairs (xi, xi−1) as cliques and use features 1{yC = xC} to represent
if a particular word pair is present in the sentence (say, xi = ‘ran’ and xi−1 = ‘dog’).
However, in this case the number of word pairs is huge (50000*50000), making the feature
dimensionality high. A more compact feature representation would, therefore, be wrt POS
tags, say, 1{xi is a verb and xi−1 is a noun}.

Remark 19.1.4 Binary Ising Model:

Here the variables xi ∈ {0, 1} are binary corresponding to two directions of spins of an atom.
The greatest clique size is 2 (i.e. |C| ≤ 2). Suppose, we use nodes and node pairs (edges)
as cliques in the graph (considering node potentials and edge potentials in UGM), we have
dimension of T (x) as 2|V | + 4|E| (this is an overparameterized exponential family – similar
to the multinoulli case – as ∑yC

TC,yC
(x) = 1). Can we find a minimal exponential family

representation?
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A minimal representation: T (x) =
[

(xi)i∈V

(xi, xj){i,j}∈E

]
=



...
1{xi = 1}

...
1{xi = 1, xj = 1}

...


This has dimensionality |V | + |E|. This representation makes sense as given pi, pj and

pij, we can recover joint probability distribution of xi and xj (as shown below).

xi: 0 1

xj:
0 1 − pi − pj + pij pi − pij

1 pj − pij pij

More generally, we have that E[T (x)] =
(

(µi)i∈V

(µi,j){i,j}∈E

)
.

19.2 Estimation of parameters for PGM

19.2.1 DGM
For the parametric family:

PΘ =

pθ(x) =
∏

i

p(xi|xπi
, θi︸︷︷︸

independent parameterization

) : θ =
(
θ1, · · · , θ|v|

)
∈ Θ = Θ1 × · · · × Θ|v|

 (19.15)
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⇒ MLE decouples in |v| independent problems. Assume we have a dataset {x(i)}n
i=1. We

have that

p (data|θ) =
n∏

i=1
p
(
x(i)|θ

)
=

n∏
i=1

|v|∏
j=1

p
(
xi|xi

πj
, θj

)
(19.16)

log [·] =
|v|∑

j=1

[
n∑

i=1
log p

(
xj(i)|xi

πj
, θj

)]
︸ ︷︷ ︸

fj(θj)

(19.17)

Example 19.2.1 DGM with Discrete Random Variables
In this case, we effectively have that the MLE, θMLE

j , is the proportion of observations.
We have that

p̂(xj = k | xπj
= stuff) =

#(xj = k, xπj
= stuff)

#(xπj
= stuff

Note that if we have latent variables (i.e., unobserved variable) in our DGM, we should use
Expected Maximization (EM) as we did for Hidden Markov Models (HMM) previously.

19.2.2 UGM
Let’s now consider parametric family subset of a UGM by using exponential families (as saw
before). Let the likelihood p(x|η) be defined as

p(x|η) = exp
(∑

C

⟨ηC , TC(xC)⟩ − A(η)
)

The log-likelihood is:

1
n

n∑
i=1

log p(x(i)|η) =
∑

c

ηT
c

 1
n

n∑
j=1

Tc(x(i)
c )


︸ ︷︷ ︸
µc

−�nA(η)
�n

(19.18)

Now, let’s take the gradient with respect to ηC .

∇ηC

[
1
n

n∑
i=1

log p(x(i)|η)
]

= µ̂C − µC(η)

We find ourselves in a bit of trouble now, however, as µC(η) = Ep(x;η)[TC(xC)], and to
compute this we need to use inference. For example, take the Ising model, for which we have
Ti,j(xi, xj) = xi · xj for xi ∈ {0, 1}, and as such the expectation is

E[Ti,j(xi, xj)] = µi,j

= p(xi = 1, xj = 1 | η)
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To get the value of p(xi = 1, xj = 1 | η) we’ll have to use some sort of approximate
inference as the treewidth is linear in the side of the grid for a grid UGM, so exact inference
is intractable. This might be sampling (e.g., Gibbs sampling), or a variational method (e.g.,
mean field approximation). We will cover sampling starting in the next lecture.
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