
IFT 6269: Probabilistic Graphical Models Fall 2016

Lecture 2 — September 6
Lecturer: Simon Lacoste-Julien Scribe: William Léchelle

Disclaimer: These notes have only been lightly proofread.

2.1 Probability review

2.1.1 Motivation
Question : Why do we use probability in data science ?
Answer : Probability theory is a principled framework to model uncertainty.

Question : Where does uncertainty come from ?
Answer : There are several sources :

1. it can be intrinsic to certain phenomenon (e.g. quantum mechanics) ;

2. reasoning about future events ;

3. we can only get partial information about some complex phenomenon :

(a) e.g. throwing a dice, it is hard to fully observe the initial conditions ;
(b) for an object recognition model, a mapping from pixels to objects can be incredibly

complex.

2.1.2 Notation
Note that probability theorists and the graphical models community both use a lot of no-
tational shorthands. The meaning of notations often has to be inferred from the context.
Therefore, let’s recall a few standard notations.

Random variables will be noted X1, X2, X3, . . . , or sometimes X, Y, Z. Usually, they will
be real-valued.

x1, x2, x3, . . . (or x, y, z), will denote the realizations of the former random variables (the
values the Xs can take).
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Formally

Ω

ω

“world of possibilities”

R
X(ω)

X

R
Y (ω)

“measurements”

Let us define Ω, a sample space of elementary
events, {ω1, ω2, ω3, . . . }1.

Then a random variable is a (measurable2) map-
ping X : Ω 7→ R.

Then, a probability distribution P is a mapping
P : E 7→ [0, 1], where E is the set of all subsets of
Ω, i.e. the set of events (i.e. 2Ω, i.e. a σ-field3) ; such that

−P (E) ≥ 0 ∀E ∈ E
−P (Ω) = 1

−P (
∞⋃

i=1
Ei) =

∞∑
i=1

(Ei) when E1, E2, . . . are disjoint.

Kolmogorov axioms

Therefore, a probability distribution on Ω induces a probability distribution on the image
of X4 : ΩX , X(Ω). An event {x} for x ∈ ΩX thus gets the probability

PX({x}) = P ({ω : X(ω) = x})
= P (X−1({x}))
= P{X = x} (shorthand)
= p(x) actually used shorthand, even more ambiguous

where X−1(A) , {ω : X(ω) ∈ A}.

Example

In the case of a dice roll, Ω = {1, 2, . . . , 6}. Let’s consider two random variables :
X measures whether the dice result is even.
Y measures whether the dice result is odd.

Formally, X = 1{2,4,6}, and Y = 1{1,3,5} where

1A(ω) ,
{

1 if ω ∈ A
0 otherwise

is the indicator function on A.
1temporarily assumed to be a countable set
2Wikipedia
3the σ-field formalism is necessary when Ω is uncountable, which happens as soon as we consider a

continuous random variable.
4The image of X is the set of the possible outputs of X : X(Ω) = {x : ∃ω ∈ Ω s.t. X(ω) = x}
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Ω

13

2
4

5

6
ΩX

ΩY

{X = 0, Y = 1}

0

1 (X(5), Y (5))

1

(X, Y )

We can now define the joint distribution on (X, Y ) ∈ ΩX × ΩY .

PX,Y ({X = x,5 Y = y}) = P
(
X−1({x}) ∩ Y −1({y})

)
(X, Y ) can be called a random vector, or a vector-valued random variable, with “random

variable” meant in a generalized sense.
We can represent the joint distribution as a table, such as in our running example :

X = 0 X = 1
Y = 0 0 1

2
Y = 1 1

2 0

For instance : P ({X = 1, Y = 0}) = P ({2, 4, 6}) =
∑

ω∈{2,4,6}
p(ω) = 1

6 + 1
6 + 1

6 = 1
2 .

Let’s also define, in the context of a joint distribution, the marginal distribution, i.e. the
distribution on components of the random vector :

P{X = x} =
∑

y∈ΩY

P{X = x, Y = y} (sum rule)

This rule is a property, deriving it from the axioms is left as an exercice for the reader.

2.1.3 Types of random variables
Discrete random variables

For a discrete random variable, ΩX is countable. Its probability distribution on ΩX , PX , is
fully defined by its probability mass function (aka pmf), PX({X = x}), for x ∈ ΩX . This
notation is shortened as PX(x), and even as p(x), “typing” x as only denoting values of the
X variable. Thereby, it is possible that p(x) 6= p(y) even if x = y, in the sense that p(x)
means PX(x) and p(y) means PY (y).

More generally, for ΩX ∈ R, the probability distribution PX is fully characterized by its
cumulative distribution function (aka cdf) : FX(x) , PX{X ≤ x}.

5This comma means and, the intersection of both events.
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FX(x)
1

−1 1

Example of a cumulative distribution
function.

It has the following properties :

1. FX is non-decreasing ;

2. lim
x→−∞

FX(x) = 0 ;

3. lim
x→+∞

FX(x) = 1.

For discrete random variables, the cumulative distribu-
tion function is piecewise constant, and has jumps.

Continuous random variables

For a continuous random variable, the cumulative distribution function is “absolutely con-
tinuous”, i.e. is differentiable almost everywhere, and ∃f(x) s.t. FX(x) =

∫ x
−∞ f(u)du. Said

f is called the probability density function of the random variable (aka pdf). Where f is
continuous, d

dx
FX(x) = f(x).

The probability density function is the continuous analog of the probability mass function
of a discrete random variable (with sums becoming integrals). Hence :

discrete continuous∑
x∈ΩX

p(x) = 1
∫

ΩX

p(x) = 1

p = prob. mass function p = prob. density function

Note in the continuous case, as a density function, p(x) can be greater than 1, on a
sufficiently narrow interval. For instance, the uniform distribution on [0, 1

2 ] :

p(x) =
{

2 for x ∈ [0, 1
2 ]

0 otherwise

2.1.4 Other random variable basics
Expectation/mean

The expectation of a random variable is

E[X] ,
∑

x∈ΩX

x p(x) or
∫

ΩX

x p(x) dx (in the continuous case)

Variance
V ar[X] , E[(X − E(X))2]

= E[X2]− E[X]2

Variance is a measure of the dispersion of values around the mean.
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Independance

X is independant from Y , noted X ⊥⊥ Y , iff p(x, y) = p(x)p(y) ∀x, y ∈ ΩX × ΩY .
Random variables X1, . . . Xn are mutually independant iff p(x1, . . . xn) = ∏n

i=1 p(xi).

Conditioning

For events A and B, suppose that p(B) 6= 0. We define the probability of A given B,

P (A|B) , P (A ∩B)
P (B)

In terms of sample space, that means we look at the subspace where B happens, and in
that space, we look at the subspace where A also happens.

For random variables X and Y , thus :

P (X = x|Y = y) , P (X = x, Y = y)
P (Y = y)

P (Y = y) = ∑
x P (X = x, Y = y) is a normalization constant, necessary in order to get a

real probability distribution.
By definition, we get the product rule :

p(x, y) = p(x|y)p(y) (product rule)

It is always true, with the subtle point that p(x|y) is undefined if p(y) = 0.6

Bayes rule

Bayes rule is about inverting the conditioning of the variables.

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∑

x′ p(x′, y) (Bayes rule)

Chain rule

By successive application of the product rule, it is always true that :

p(x1, . . . , xn) = p(x1:n−1)p(xn|x1:n−1)
= · · ·
= ∏n

i=1 p(xi|x1, . . . , xi−1)
(Chain rule)

The last part can be simplified using the conditional independance asumptions we make,
like in the case of directed graphical models.

6In probability theory, we usually do not care what happens on sets with probability zero; so we are free
to define p(x|y) to be any value we want when p(y) = 0.
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Conditional independance

X is conditionally independant of Y given Z, noted X ⊥⊥Y |Z, iff

p(x, y|z) = p(x|z)p(y|z) ∀x, y, z ∈ Ωx×Ωy×Ωz s.t. p(z) 6= 0

For instance, with Z the probability that a mother carries a genetic disease on chromo-
some X, X the probability for her first child to carry the disease, and Y the same probability
for her second child, we can say that X is independant of Y given Z (because only the status
of the mother impacts directly each child : once that is known, children’s probabilities of
carrying the disease are independant from each other).

As an exercise to the reader, prove that p(x|y, z) = p(x|z) when X ⊥⊥Y |Z.
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