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Important References

● GFlowNet Foundations. Yoshua Bengio, et al. JMLR 2023.

● [NeurIPS 2021 GFlowNet paper] Flow Network based Generative Models
for Non-Iterative Diverse Candidate Generation. Emmanuel Bengio, et al.
NeurIPS 2021.

● [Structure Learning with GFlowNets] Bayesian Structure Learning with
Generative Flow Networks. Tristan Deleu, et al. UAI 2022.

3

https://papers.nips.cc/paper/2021/hash/e614f646836aaed9f89ce58e837e2310-Abstract.html
https://papers.nips.cc/paper/2021/hash/e614f646836aaed9f89ce58e837e2310-Abstract.html
https://arxiv.org/pdf/2202.13903.pdf
https://arxiv.org/pdf/2202.13903.pdf


Setting

We want to do inference over an intractable distribution:
● Sampling: 𝑥 ᯈ p(𝑥).
● Computing expectations: E𝑥ᯈp(𝑥) [f(𝑥)].

Sampling is intractable, but:
● Samples are discrete* and can be built compositionally.
● Can not evaluate p(𝑥), but can evaluate a reward function “R” such that p(𝑥) ∝

R(𝑥).
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*For continuous GFlowNets, see A Theory of Continuous Generative Flow Networks (S. Lahlou et al., 2023) 



Simplified Taxonomy for Sampling

● Easy: Know p(𝑥), can efficiently sample from p(𝑥) 
○ Uniform
○ Mixture of Gaussians
○ HMM (with Gaussian emission probabilities)

● Approximate: sampling is expensive or impossible, but can evaluate p(𝑥) 
○ Rejection sampling: for using an easy distribution q(𝑥)
○ Importance sampling
○ MCMC: exploit structure and low dimensionality of p(𝑥i | 𝑥ᯈ i )
○ Variational Inference: sample from easy q ∈ argmin KL(q || p)
○ GFlowNets (can evaluate R(𝑥) ∝ p(𝑥); next slide)
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GFlowNets Main Idea

Given a reward function R(𝑥),

1. Construct a DAG G over all possible samples 
a. States: possible samples 𝑥 (e.g. all possible chemical molecules)
b. Transitions: composition of parent to produce child (e.g. adding a basic 

molecule to produce a more complex one)

2. Learn a probability distribution p ∈ L(G) such that p(𝑥) ∝ R(𝑥)
a. In practice, GFlowNets model unnormalized “flows” such that F(𝑥) = R(𝑥)
b. Also, approximate F(𝑥) variationaly (i.e. use a neural network to output F(𝑥))

3. Sample over G.
a. Ancestral sampling, beam search, …
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Applications

7



8

GFlowNets for AI-Driven Scientific Discovery. Moksh Jain, et al. Digital Discovery 2023.

Scientific Discovery

For instance, constructing molecules.

● States: sets of (partially constructed) molecules.

● Transitions: addition of a basic molecule.

● Reward: property of the molecule.

Building blocks

https://arxiv.org/pdf/2302.00615.pdf


Combinatorial Optimization Problems

For instance, finding the largest clique in a UGM.

● States: sets of fully connected nodes.

● Transitions: addition of a basic molecule.

● Reward: size of the set.
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Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. Dinghuai 
Zhang, et al. NeurIPS 2023.

https://arxiv.org/pdf/2305.17010.pdf


Structure Learning
Let be rvs. We want to construct a “minimal” graph       
such that:
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Samples



Structure Learning

● States: DAGs.

● Transitions: addition of a directed edge.

● Reward: likelihood of data given the graph.

The transitions exploit the compositional aspect. Instead of looking at all
possible DAGs without structure, the GFlowNet depth equals the number of
edges in the DAG.
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Structure Learning
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Flow Networks
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Flow Networks

● DAG                     with source and sink states, 

● Trajectories                          , where

● Let      be the set of all trajectories.

● Forward transition probabilities
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is a probability Chain rule



Flow Networks

Instead of modeling probabilities, consider (unnormalized) flows:
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Flow Networks
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*Fig 2 in GFlowNet Foundations



Flow Networks

The flow induces a distribution over the terminating states.
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Flow Networks

The flow induces a distribution over the terminating states.
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Flow Networks
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But parameterizing a flow is expensive! -> One value per trajectory in G.

If we learn a flow F that matches a reward function on terminating states:

● A probability distribution over terminating states follows.

● The probabilities are proportional to the reward.

● And the graph G can be used to efficiently sample.



Markovian Flow Networks
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Instead, consider Markovian flow networks:

● Cheaper to model.

● Induces a unique forward transition probability P(s’|s).

● Proposition 23 in GFlowNet Foundations: the set of markovian flows is
expressive enough to represent all flow functions over trajectories.



Markovian Flow Networks

● Even Markovian flows are expensive (need flow over every node). 

● Approximate F with a neural network respecting flow conservation:
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Generative Flow Networks - GFlowNets

A GFlowNet is a (Markovian) flow network where:
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● R is a given reward function.

○ If s is not a valid terminating state, set a reward of 0.

● F is parameterized with (say) a NN.



Training GFlowNets

23



Training GFlowNets

The NeurIPS 2021 GFlowNet paper enforces flow matching:
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Which leads to the following objective:

0 for invalid states



Training GFlowNets

The expectation is over all trajectories -> intractable.
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Sample trajectories instead

● If there is structure, the GFlowNet could generalize across trajectories.

● Trade-off between sampling likely trajectories and exploration.

trajectories 



Training GFlowNets

The expectation is over all trajectories -> intractable.
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Note: this is different from supervised learning and reinforcement learning
● SL: the distribution over trajectories is non-stationary
● RL: F is not trained to maximize a reward, just to match it

trajectories 



Alternative Loss Functions

Detailed balance (Bengio et al., 2021):
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Trajectory Balance: Improved Credit Assignment in GFlowNets. Nikolay Malkin et al., NeurIPS 2022.

Trajectory balance (Malkin et al., 2022):

https://arxiv.org/pdf/2201.13259.pdf


GFlowNets in Context
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Markov Chain Monte Carlo

● No “setup” cost.

● Samples are not independent

● Sampling is costly

○ Mixing time can scale poorly

○ Mode mixing

● Needs to be trained.

● Samples are independent.

● Sampling is efficient: do 
ancestral sampling
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MCMC GFlowNets



Generative Modeling

● Trained on data, to maximize its 
likelihood.

● Prone to overfitting.

● Improves with more data.

● Trained to match a reward 
function. 

● Prone to underfitting.

● Improves with more trajectories.

32

Generative Modeling GFlowNets



Reinforcement Learning
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Reinforcement Learning GFlowNets

See section 7.2 in GFlowNet Foundations



Thanks!
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Generative Flow Networks and 
Bayesian Structure Learning



Structure Learning
Credit to Tristan Deleu



Structure Learning

• Graphical representation of the conditional 
independences in a distribution, represented as 
a Directed Acyclic Graph (DAG).


• The joint distribution is decomposed as:  
 
 

• Structure learning: Given a dataset of 
observations    , find the graph structure    .
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Markov Equivalence
• Recall: A Directed Graphical Model encodes the Conditional Independence of a distribution.


• Multiple DAGs may encode the same Conditional Independence statements.


• Two DAGs encoding the same Conditional Independence statements are called Markov 
Equivalent.



Markov Equivalence

Theorem (Verma & Pearl, 1991)

• Two DAGs G1 and G2 are Markov Equivalent if and only if they have the same skeleton and the 

same v-structures.


• Markov Equivalence Classes can be represented as a Completed Partially Directed Acyclic 
Graph (CPDAG).



Faithfulness

A & B are d-separated 
by C in 



Structure Identifiability

• Only the Markov Equivalence class is identifiable from observations, not an individual 
graph. Two Markov Equivalent graphs may lead to different causal conclusions!

• Under different assumptions, an individual DAG may be identifiable


• Additive Noise Model (ANM): Xj := fj(XPaj ) + Nj, Nj iid ∼ N (0, σ2), where fj are nonlinear. 


• Using interventional data (i.e. data resulting from controlled experiments).



Constraint-based methods



Constraint-based methods



Constraint-based methods

Rule 1 Rule 2 Rule 3 Rule 4



Score-based methods

• Treat the problem of learning the structure of the DAG as a model selection problem

Choice of scores

• Likelihood score:

• Bayesian score:

• Bayesian Information Criterion (BIC):



Score-based methods

• How to search over the space of DAGs?


• The number of DAGs over n nodes is super-exponential in n:

• Heuristic solutions:


• Greedy algorithms: Hill climbing, GES


• Genetic algorithms


• Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc…



Bayesian Structure Learning
• When the dataset is small, we want to take into 

account the epistemic uncertainty over the 
graph structures of the Bayesian Network.


• Markov Equivalence: There may be multiple 
graphs encoding the same conditional 
independences. 
 
 
 
 
 

• From the point of view of observations, Markov 
equivalent graphs fit the data equally well.

Bayesian Structure Learning:  
Instead of finding a single graph from 
observations, characterize the whole 
posterior distribution over graphs:



Bayesian Structure Learning

Bayesian Structure Learning:  
Instead of finding a single graph from 
observations, characterize the whole 
posterior distribution over graphs:

Graphs are discrete and composite objects
The number of DAGs is super-exponential in the 

number of nodes (eg. there are 1072 DAGs over 15 nodes)

The marginal likelihood is in general intractable

We will choose models so that this can be computed efficiently in closed form.



Markov Chain Monte Carlo

● Approximate the posterior distribution using 
Markov Chain Monte Carlo (MCMC).

● Build a Markov chain by adding, removing, or 
reversing edges uniformly at random.

● Issue: Highly multimodal distribution (Markov 
equivalence), leading to poor mixing of the 
Markov chain.

David Madigan, Jeremy York, Denis Allard. 
Bayesian Graphical Models for Discrete Data. 1995.



DAG-GFlowNet



GFlowNet over DAGs

• DAGs are constructed sequentially one edge at 
a time, starting from the empty graph. 

• All the states of the GFlowNet are valid DAGs, 
meaning that all the states are terminating.


• A new edge to be added to a DAG:


• must not already be present;


• must not introduce a cycle.


• We can filter out invalid actions using a mask, 
that can also be updated online.
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Detailed balance condition

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, Emmanuel Bengio,  
GFlowNet Foundations (ArXiv 2021)

Flow matching condition (Bengio et al., 2021)

+
Detailed balance condition (Ours)

Fixed backward 
transition probability 

e.g. Uniform distribution

Learned forward 
transition probability 

✓ Valid when all the states of the GFlowNet are terminating


✓ Induces a distribution 

✓ It does not depend on flows anymore (flow-matching or 
detailed balance conditions).


✓ It does not depend on the total flow  
(trajectory balance condition).



Forward Transition Probabilities
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✓ Independent of the order of edges.


✓ Set-to-set architecture.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, François Fleuret,  
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (ICML 2020)

✓ The number of parameters does not scale 
too much with the size of the graph.


✓ No quadratic scale with the input size.

Hierarchical model for the forward transition probabilities:



Application to Bayesian Structure Learning

Bayesian Structure Learning 
Characterize the posterior distribution over DAGs GFlowNet 

A GFlowNet induces a distribution

DAG-GFlowNet



Tools from Reinforcement Learning

The GFlowNet is trained off-policy
We use a replay buffer to store transitions over the course 
of training, and sample transitions from the replay buffer



Experimental results



Experimental results – Accurate approximation
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Experimental results – Simulated data
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Experimental results – Flow cytometry data

• Real-world flow cytometry data, to learn protein 
signaling pathways.


• Data: continuous measurements of 11 
phosphoproteins. There are 853 observations.


• The ground truth graph contains 11 nodes and 
17 edges.


• The consensus graph may not represent a 
realistic description of the system. �10,760 �10,750 �10,740 �10,730 �10,720
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Experimental results – Flow cytometry data
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Experimental results – Interventional data

• The real world flow cytometry data also contains 
interventional data, based on experimentations 
where some phosphoproteins are inhibited.


• We model these as perfect interventions, 
even though it may not be the case in practice.


• We know the intervention targets.


• We can adapt the reward function (computation 
of the marginal likelihood) to handle a mixture of 
observational & interventional data. 

• This is a first step toward causal discovery.

E-# Edges E-SHD AUROC

Exact posterior? – – 0.816
MC3 25.97± 0.01 25.08± 0.02 0.665

DAG-GFlowNet 30.66± 0.04 27.77± 0.03 0.700



Thank you

github.com/tristandeleu/jax-dag-gflownet

https://github.com/tristandeleu/jax-dag-gflownet
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