
IFT 6269: Probabilistic Graphical Models Fall 2020

Lecture 26 — December 4
Lecturer: Jose Gallego Posada Scribe: Naga Karthik

Disclaimer: These notes have only been lightly proofread.

Bayesian Non-Parametrics
The aim of this lecture is to briefly introduce Stochastic processes and dive a little deeper

into Gaussian processes and Dirichlet processes. However, note that this lecture will not cover
the implementational aspects and hyperparameter selection. For a more in-depth/complete
understanding of these topics, the readers are referred to the works of David MacKay, Yee
Whye Teh, Kilian Weinberger, Tamara Broderick, and Michael Jordan.

26.1 Stochastic Process
A stochastic process is defined as a collection of random variables defined on a common
probability space (Ω, F ,P), where Ω is a sample space, F is a sigma-algebra, and P is a
probability measure; and the random variables, indexed by some set T, all take values in the
same space S, measurable with respect to some σ-algebra.

Mathematically, it can be understood as: For every element t ∈ T , there is a random
variable X (from a common probability space) indexed by t. Therefore, we have a simple
definition as:

{X(t) | t ∈ T}

26.1.1 Examples of Stochastic Process
The following are some examples of stochastic processes:

• Single random variable: Consider any singleton set T , say {1} for instance. Then, the
collection of random variables indexed by T is given by {X1}.

• IID random variables: Consider the finite set {1, 2, . . . , n} to be the indexing set T .
The corresponding collection of random variables is given by {X1, X2, . . . , Xn}, where
Xi and Xj are independent and follow a common distribution X∗.

• Deterministic function: Let f be a function f : T → S, given the index set T , the
collection is defined as {X(t) := δf(t) | t ∈ T}, where δ is the Dirac distribution.

• Wiener process, Poisson process, etc.

• Gaussian process

• Dirichlet process
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26.2 Gaussian Processes
The goal is to do inference based on the inputs X and targets t and use that for prediction
when presented with an unseen test input x∗. Inference is essentially calculating the posterior
distribution over the models y(·) using Bayes’ theorem:

P(y(·) | t, X) = P(t | y(·), X)P(y(·))
P(t | X) (26.1)

where, P(t | y(·), X) is the likelihood, P(y(·)) is the prior over functions, and P(t | X) is the
evidence. It is important to note that the prior P(y(·)) cannot be easily defined because it
has to cover an infinite-dimensional space.

The posterior distribution is further used for prediction as it allows us to obtain the
predictive distribution P(t∗ | x∗, t, X) defined as:

P(t∗ | x∗, t, X) =
∫
P(t∗ | y(·), x∗)P(y(·) | t, X)dy (26.2)

where, P(y(·) | t, X) is computed from equation (26.1).

26.2.1 Gaussian Properties
We do a quick review of Gaussian properties as they are useful in the treatment of Gaussian
processes. Consider the following setting where there are two random variables X, Y and
they are Gaussian distributed with mean µ and Σ as:[

X
Y

]
∼ N

([
µX

µY

]
,

[
ΣX ΣXY

Σ⊤
XY ΣY

])

The following are some of the important properties of Gaussian distributions:
Property 26.2.1 (Tractable) Normalization -

∫
p̃(x)dx = (2π)d/2|Σ|1/2

• Allows us to have a closed-form solution and is also easier for sampling.
Property 26.2.2 Marginalization - X ∼ N (µX , ΣX)

• X is distributed according to a Gaussian with mean µX and covariance ΣX . Can be
proved using the characteristic function of a Gaussian.

Property 26.2.3 Conditioning - X | Y = y ∼ N (µX + ΣXY Σ−1
Y (y − µY ), Λ−1

X )
• Where Λ := Σ−1. Note that the conditional distribution is also a Gaussian.

Property 26.2.4 Addition - X + Y = N (µX + µX , ΣX + ΣY + 2ΣXY )
• Addition of two Gaussian random variables is also a Gaussian.

Property 26.2.5 Product of densities - N (x | µ1, Σ1) · N (x | µ2, Σ2) ∝ N (x | µ3, Σ3)
• Note: This is not a product of two Gaussian random variables, rather, it’s a product

of two Gaussian densities that results in an un-normalized Gaussian density.
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26.2.2 Linear Regression
The goal is to perform inference on a linear model. We start with the following assumptions:

• Locations {xi | i ∈ [1, N ]}

• Basis functions {ϕh(x)}H
h=1 - some transformations of the input x using H basis func-

tions.

• Linear model y(ϕ(x), w) = w⊤ϕ(x)

• Prior w ∼ N (0, σ2
wI) - a Gaussian defined over the weights w with isotropic covariance.

• Observation noise t | y ∼ N (y, σ2
ν) - typically defined as t = y + σνϵ, where y is the

“true value” that is not observed directly.

Given these assumptions, we have that the joint distribution of the true values of the
model y is a Gaussian given by: yN ∼ N (0, σ2

wΦNΦ⊤
N) where ΦN is the n × d design matrix

where each ϕ(xi) is put as a row. Since we don’t observe the true values directly but
observe a noisy version of them, we arrive at a similar conclusion for the targets t which is:
tN ∼ N (0, σ2

wΦNΦ⊤
N + σ2

νI).

Remark 26.2.1 The term ΦNΦ⊤
N is interesting because considering a value (ΦNΦ⊤

N)ij, even
before we observe the values of the noisy random variables, our prior encodes our belief that if
features of datapoint i and features of datapoint j are similar, then the corresponding values
of yi and yj will be close to each other.

Remark 26.2.2 The covariance matrix (σ2
wΦNΦ⊤

N +σ2
νI) can be generalized to any positive

semi-definite (PSD) similarity matrix. This has deep connections to the theory of kernel
regression.

Note: From here on, the similarity matrix is represented using C wherein C(xi, xj) refers
to the similarity between Xi and Xj.

26.2.3 Definition of a Gaussian Process
The probability distribution of a function y(x) is a Gaussian process if for any finite se-
lection of points (x1, x2, . . . , xN), the vector [y(x1), y(x2), . . . , y(xN)] follows a Gaussian
distribution. Recalling what we defined earlier for stochastic processes, we have that:

• Index set T - X - the set of possible inputs x

• Value space S - Rl (can also be multi-dimensional)

• Random variables - Gaussians (it’s essentially the function values acting as random
variables for checking the distribution they follow)
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Now, given all this information, we finally observe the targets tN = {ti | i ∈ [1, N ]}
and would like to infer a new target tN+1 for a new test point xN+1. The similarity matrix
for a new datapoint is given by:

CN+1 =
[
CN k

k⊤ κ

]
(26.3)

where, CN is the collection of all the similarity values for the N datapoints in the space, an
element in k, say kj, is the similarity value between j-th and the new datapoint XN+1, i.e.
kj = C(XN+1, Xj), and κ is the similarity value between the new datapoint with itself, i.e.
C(XN+1, XN+1).

The predictive distribution is now given by:

P(tN+1 | tN) = P(tN+1, tN)
P(tN) ∝ exp

[
−1
2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
(26.4)

For notational simplicity, the dependence on ΦN is omitted here. Note that this is only a
distribution over tN+1. Upon further simplification we have the following result:

t∗ | t1, . . . , tN , x1, . . . , xn, x∗ ∼ N (k⊤C−1
N tN , κ − k⊤C−1

N k) (26.5)

Remark 26.2.3 The dependence is on CN (and not CN+1). So, for prediction over multiple
test points, we only need to calculate the inverse of the similarity matrix over the data space
CN once, augment the corresponding k for all the new test points and then compute the
Gaussian with mean and variance (using simple linear algebra).

Remark 26.2.4 The posterior mean is linear w.r.t tN weighted by the term k⊤C−1
N . For

instance, if we have positive correlation between elements, then a higher target value would
correspond to a new test point distribution with higher mean.

Note: A demo showing the working of a Gaussian process can be found at the following
link: http://chifeng.scripts.mit.edu/stuff/gp-demo/

26.2.4 GP Summary
Problem: y is a function i.e. “an infinite-dimensional vector”. But the multivariate Gaussian
distribution is only defined for finite dimensional vectors.
Definition: A GP is a (potentially infinite) collection of random variables such that the joint
distribution of every finite subset of them is a multivariate Gaussian.

If we start with the assumption that the function values are distributed according to a
Gaussian prior i.e. y(X1), . . . , y(XN) ∼ N (0, CN), then the posterior distribution is also a
Gaussian of the form:

t∗ | t1, . . . , tN , x1, . . . , xn, x∗ ∼ N (k⊤C−1
N tN , κ − k⊤C−1

N k)
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26.3 Dirichlet Processes
Considering the generative modelling perspective, we define our model (say, a latent variable
model) as follows:

• Assignments zn | ρ ∼ Categorical(ρ1, . . . , ρK) - the class assignments are obtained from
a Categorical distribution with ρi ≥ 0 and ∑i ρi = 1.

• Class conditionals xn | zn ∼ N (µzn
, Σ) = Fzn - the class conditionals depend on a

specific value Fzn of the latent variable.

We also make some prior assumptions as follows:

• Number of classes K is known.

• Class proportions ρ ∼ Dir(α1, . . . , αK) - following a Dirichlet distribution.

• Class parameters µk ∼ N (µ0, Σ0) = H - the parameters defining the behaviour of Fzn

are themselves sampled from a Gaussian with fixed mean and covariance, called H.

26.3.1 Dirichlet Distribution
The Dirichlet distribution is formally defined as:

P(ρ1, . . . , ρK | α1, . . . , αK) = Γ(Σkαk)∏
k Γ(αk)

K∏
k=1

ραk−1
k (26.6)

Remark 26.3.1 The Dirichlet distribution can be thought of as a distribution over distribu-
tions. This is because whenever we sample a random variable from this distribution, we get a
collection of ρ1, . . . ρK which in turn specifies a Categorical distribution. Note that ρ1, . . . ρK

belong to a simplex of K − 1 dimensions.

Remark 26.3.2 The Dirichlet distribution is a direct extension of the Beta distribution
defined only over ρ1, ρ2 and α1, α2.

An important property of the Gamma distribution is given below. It behaves similar to
the factorial function.

Property 26.3.1
Γ(z + 1) = zΓ(z) where, z ∈ C (26.7)

Property 26.3.2 Collapsibility property aka Aggregation
If ρ = (ρ1, . . . , ρK) ∼ Dir(α1, . . . , αK), then if the random variables at the i-th and j-th

index are dropped and replaced with their sum, the new distribution is also Dirichlet with:

ρ′ = (ρ1, . . . , ρi + ρj, . . . , ρK) ∼ Dir(α1, . . . , αi + αj, . . . , αK) (26.8)

It can be useful in deriving the marginal distribution of ρi from the joint above.
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26.3.2 Understanding the influence of Dirichlet parameters
Let us consider the following extension of the collapsibility property where we fix a ρi and
sum over all others: ρi,

∑
j ̸=i

ρj

 ∼ Dir
αi,

∑
j ̸=i

αj


Recall that if we have a collection of random variables following a Dirichlet distribution,
then each random variable follows a Beta distribution i.e. ρi ∼ Beta(αi, α0 − αi), where,
α0 = ∑

i αi. Likewise, we can also compute the mean, variance and the covariance as:

E[ρi] = αi

αi + α0 − αi

= αi

α0
(26.9)

Var(ρi) = αi(α0 − αi)
α2

0(α0 + 1) (26.10)

Cov(ρi, ρj) = −αiαj

α2
0(α0 + 1) (26.11)

Remark 26.3.3 Note that in equation 26.10 if αi is too small or if αi ≈ α0 the variance will
be small (i.e. ≈ 0). Similarly, considering the scale of the parameters, if all the parameters
are large, the denominator becomes much larger and hence the variance will be small.

Remark 26.3.4 The covariance in equation 26.11 is negative to account for the fact that
the random variables lie in a probability simplex (summing up to 1), so, intuitively, if one of
the variables gets large then the others have to be small for this to be true.

Figure 26.1 shows an example of how different values of Dirichlet parameters determine
the spread of the probability density function (pdf) on the 2-simplex. In the top-left image,
E[ρi] = 0.33 and α0 = 4.5 showing concentric shapes for each random variable. In the top-
right image, α0 = 15 which shows that the variance is small hence the concentric shapes are
concentrated in the middle of the simplex. For the bottom-right image, E[ρ3] = 8

14 = 0.57
which explains the skewness towards the random variable ρ3.

26.3.3 Dirichlet Simulation
The goal here is to outline a mechanism for sampling from a Dirichlet distribution. We have:

ρ1 ∼ Beta(α1,
K∑

k=1
αk − α1) ⊥ (ρ2, . . . , ρK)

1 − ρ1
∼ Dir(α2, . . . , αK) (26.12)

ν2 ∼ Beta(α2,
K∑

k=2
αk − α2) ρ2 = (1 − ν1)ν2 (26.13)

26-6



Lecture 26 — December 4 Fall 2020

Figure 26.1: Probability density functions for the Dirichlet distribution on the 2-simplex.
Source: Dirichlet distribution wikipedia.

... ...

νl ∼ Beta(αl,
K∑

k=l

αk − αl) ρl =
(

l−1∏
k=1

(1 − νk)
)

νl (26.14)

ρK = 1 −
K−1∑
k=1

ρk (26.15)

Remark 26.3.5 Consider equation 26.12 where ρ1 is sampled from a Beta distribution.
If the distribution is re-normalized excluding the most recent sample (ρ1 in this case), we
again obtain a Dirichlet distribution without the corresponding parameter α1 for the random
variable ρ1. In other words, the re-normalized distribution, once ρ1 is observed, only depends
on the values of the remaining random variables.

Remark 26.3.6 Considering equation 26.13, note that ν2 denotes the sample from the re-
normalized distribution (without ρ1). Therefore, ρ2 is obtained by multiplying ν2 with the
remaining portion denoted by (1 − ν1).

Therefore, we have the following outline where we sample from a Beta distribution, re-
normalize it, sample another variable from the updated distribution, re-normalize it, and so
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on until we reach K − 1 random variables. The K-th can then be sampled by subtracting
all the previously sampled variables from 1 (equation 26.15).

Note: This is also analogous to the stick-breaking mechanism where, with each sampled
variable we chop off a certain portion of the stick and continue sampling from the remaining
portion.

26.3.4 How do we choose K?
We don’t! Instead, we directly consider an infinite-dimensional mixture model. The goal
here is to extend our knowledge of sampling from a finite Dirichlet to an infinite setting when
we don’t know K to begin with.

The solution is to keep continuing the “stick-breaking” process till infinity i.e.

ν1 ∼ Beta(α1, β1) ρ1 = ν1

ν2 ∼ Beta(α2, β2) ρ2 = (1 − ν1)ν2

... ...

νl ∼ Beta(αl, βl) ρl =
(

l−1∏
k=1

(1 − νk)
)

νl

... ...
However, the values for αl and βl must be chosen carefully for proper normalization as

they dictate whether the portion of the stick chopped off is too small or too large.
Towards that end, a method proposed by Griffiths, Engen and McCloskey (GEM) is to

use the following strategy:

νl = Beta(1, α) ρ1, ρ2, . . . ∼ GEM(α)

Remark 26.3.7 Using the GEM strategy, we can observe that E[νl] = 1
1+α

, where E[νl] ≈ 1
if α << 1 and E[νl] ≈ 0 if α >> 1.

26.3.5 Random Measures
We have an infinite collection of proportions ρ1, ρ2, . . . ∼ GEM(α) and a distribution over
the parameters of the distribution ϕ1, ϕ2, . . .

iid∼ H (e.g. N (µ0, Σ0)), which comprise two
sources of randomness. Recall the generative modelling setting in the beginning of section
26.3 where we had the parameters of the distribution specified by a fixed mean depending
on the class and a shared covariance matrix. So, we have S ∈ Rd × {Σ}, with each point in
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this space being a vector that is parametrized by the mean (for each class) and the shared
covariance matrix. We then define a random measure over the space S:

G =
∞∑

k=1
ρkδϕk

(26.16)

Its interpretation is as follows: we sample infinitely many proportions ρ’s and the parameters
of the distribution ϕ’s according to the distribution H (which is also a distribution on the
space S) and define a random measure such that for each location ϕk in the space S, a Dirac
distribution is assigned with a height (given by the corresponding proportion ρk) that is
associated with the location ϕk.

The sampling is then done as follows:
zn | G ∼ G (26.17)
xn | zn ∼ Fzn (26.18)

Equation 26.17 tells that once we have defined the random measure G, we sample the class
assignments from G and note that realizations of zn are nothing but ϕk’s parameterized by
N (µk, Σ). Given the class assignments zn, we can then obtain the observations by sampling
from F , which depends on zn by N (µzn

, Σ).

Why is G a random measure?

First, note that G is also a distribution on S. Consider a subset of the space S, say A, and
apply the random measure G on the subset A denoting it as G(A) ∈ [0, 1]. Now, we see
that for any subset in S, the result of applying this measure on that subset will be random
because G itself is a random measure with ρ’s and ϕ’s being its sources of randomness. Since
G(A) is random, we can analyze it further by calculating its expectation EG[G(A)].

EG[G(A)] = EG

[∑
k

ρkδϕk
(A)

]

= Eρ

[∑
k

ρkEϕk
[δϕk

(A)]
]

= Eρ

[∑
k

ρkH(A)
]

(∵ δϕk
(A) = 1 if ϕk lies in A )

This is because the Eϕk
[δϕk

(A)] is the probability that ϕk belongs to A. But, ϕ’s are defined
according to H, therefore, the probability measure w.r.t which it is obtained is H.

= H(A) (∵ H(A) is independent of ρ)

Remark 26.3.8 This result tells us that whatever random measures G we obtain by creating
subsets on the space S, their expectation always results in the probability measure H being
applied to the subsets on the space S. In other words, the probability that a random measure
assigns to a subset in expectation is same as the probability that H assigns to the subset.
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26.3.6 Definition of a Dirichlet Process
Given a measurable space (S, M), a base probability distribution H and α > 0, the proba-
bility distribution of a (random) measure G is a Dirichlet process if for any finite partition
{A1, . . . , Ar} of S, the vector [G(A1), . . . , G(Ar)] ∼ Dir(αH(A1), . . . , αH(Ar)). As for every
stochastic process, we have:

• Random variables - Dirichlet (every component of random vector arising from a finite
partition of the space S will follow a Dirichlet distribution)

• Index set T - M (the "measureable" subsets of the space)

Exercise to the Reader: Explore the behavior of a Dirichlet process DP(α, H) when: (i)
α → 0? and (ii) α → ∞? This should also lead you to understand why α is known as the
concentration parameter.

26.3.7 DP Summary
Problem: ρ1, ρ2, . . . is an infinite-dimensional probability vector. But, the Dirichlet distribu-
tion is defined for finite dimensional spaces.

Definiton: A DP is a distribution over probability measures such that for every finite
partition, the probabilities of the partition elements follow a joint Dirichlet distribution.

[G(A1), . . . , G(Ar)] ∼ Dir(αH(A1), . . . , αH(Ar))
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