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Lecture 5 — September 19
Lecturer: Simon Lacoste-Julien Scribe: Sébastien Lachapelle

Disclaimer: These notes have only been lightly proofread.

5.1 Statistical Decision Theory

5.1.1 The Formal Setup
Statistical decision theory is a formal setup to analyze decision rules in the context of un-
certainty. The standard problem in statistics of estimation and hypothesis testing fit in it,
but we will see that we can also the supervised learning problem from machine learning in
it (though people are less used to see this in machine learning).

Let D be a random observation (in ML, it would be a training dataset, which is why we
used D). Let D be the sample space for D (the set of all possible values for D). D P D. We
say that D ∼ P where P is a distribution over the set D. We suppose that P belongs to a
certain set of distribution P . We sometimes have that the distribution is parametrized by a
parameter θ in which case we note this distribution Pθ. P represents the (unknown) state
of the world (there is the source of uncertainty).

Let A be the set of all possible actions. We will denote a a certain action in A.

Let L : P
�

A ÞÑ R be the (statistical) loss function. So LpP, aq is the loss of doing action
a when the actual distribution is P (when the world is P ).

Let δ : D ÞÑ A be a decision rule.

Less formally, we observe something (D) from nature (P ), but we do not actually know
how mother nature generates observations (We don’t know P ). Even so, we suppose that P
belongs to a certain set of distribution (P). We are in a context where we have to choose an
action (a) among a certain set of actions (A). Given the facts that we choose action a and
that the actual reality is P , we must pay a certain cost LpP, aq. Since we get to observe a
realisation of P , it makes sense to base our action on this observation. This decision process
is described by δ.

Important subtle point: often P will describe an i.i.d. process, e.g. D � pX1, ..., Xnq
where Xi ∼iid P0. In this case, we often just write the dependence of the loss in terms of
P0 instead of the full joint P , i.e. LpP, aq � LpP0, aq. Note that the framework also works

5-1



Lecture 5 — September 19 Fall 2016

for non i.i.d. data, but in this lecture we only consider i.i.d. data, and so when we write
LpP, aq, we mean P as a distribution on Xi, not the joint one...

Examples

A) Estimation:
Suppose Pθ belongs to a parametrized family of distribution we call P . We say that θ
belongs to a parameter space denoted by Θ. We pose A � Θ. In this context, δ is an
estimator of θ. We pose the following loss function (the famous "squared loss"):

LpPθ, aq �‖θ � a‖2
2

We sometimes note Lpθ, aq instead of LpPθ, aq where this simplification applies. Remem-
ber that δpDq � a. In this specific case, we can write δpDq � θ̂.
We can suppose more specifically that D � pX1, ..., Xnq where Xi ∼iid Pθ. This mean
we would have:

Lpθ, δpDqq �‖θ � δpDq‖2
2

As a concrete example, suppose that Pθ belongs to a Gaussian family P � tN p
 ;µ, 1q| µ P
Ru. It would mean that Θ � R. For example, we could choose our decision function to
be δpDq � 1

n

°
iXi.

B) Hypothesis Testing: A � t0, 1u where 0 might mean not rejecting the null hypothesis
and 1 might mean accepting it. In this context, δ describes a statistical test.

C) Machine Learning for prediction:
Let D � ppX1, Y1q, ..., pXn, Ynqq. We have that Xi P X and that Yi P Y for all i. We call
X the input space and Y the output space. Let pXi, Yiq ∼iid P0. Then D ∼ P where P
is the joint over all the i.i.d. pXi, Yiq couples. A � YX (the set of functions who maps
X to Y).
In the prediction setting, we define a prediction loss function l : Y2 ÞÑ R. This function
is usually a measure of the distance between a given prediction and it’s associated ground
truth.
The actual loss function we would like to minimize is

LpP, fq � EP0rlpY, fpXqqs
This is traditionally called the generalization error, and is also often called the risk in
machine learning. Simon calls it the Vapnik risk to distinguish it from the (frequentist)
risk from statistics that we will define later.
In this context, the decision rule δ is actually a learning algorithm that outputs a function
f̂ P YX . Equivalently, we can write that δpDq � f̂ .
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5.1.2 Procedure Analysis
Given this framework, how can we compare different rules (ie. procedures)? Given δ1 and
δ2, how can I know which is better for a given application?

(Frequentist) Risk

The first property to analyze a procedure is called the risk (or the frequentist risk):

RpP, δq � ED∼P rLpP, δpDqs
Remarks: The risk is a function of P and we don’t know what P is (in practice). So we

never really know what’s the value of this function for a given rule δ. On the other hand, this
property is a theoretical analysis device: we can make statement like for P in some family
P , procedure δ1 has lower risk than procedure δ2 (and is thus better in some sense). Also it
is important to distinguish the (frequentist) risk from the generalization error (the Vapnik
risk).

In the next graph, we expose the risk profiles of two rules. For simplicity, we suppose
that Pθ is a parametrized distribution and that θ P R.

This picture illustrates the fact that sometimes, there is no clear winner when comparing
two rules. In this case, it seems that δ1 is the best choice for values of θ near 0. But for
values of θ far from 0, δ2 is the best choice. The problem is, we don’t know the value of θ,
so we don’t know the best rule to pick. We will see later that there are, in fact, ways to
"bypass" this problem.

Domination and Admissibility

We say that a decision rule δ1 dominates another decision rule δ2 for a given loss function L
if

RpP, δ1q ¤ RpP, δ2q@P P P and

DP P P , RpP, δ1q   RpP, δ2q
We say that a decision rule δ is admissible if Eδ0 s.t. δ0 dominates δ.
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PAC theory

(Aside point for your culture). An alternative to the (frequentist) risk approach, is the
PAC approach, which is common in machine learning theory. PAC stands for "probably
approximately correct", and instead of looking at the average loss over datasets like the
frequentist risk does, it looks at ‘tail bound’ of the loss, i.e. a bound B such that we know
that the loss will be smaller than ‘with high probability’ (this is why it is called PAC). Given
a certain loss function L, a decision function δ, a distribution P over all possible D and a
small real number ε ¡ 0; PAC theory seeks to find a bound B such that:

PrtLpP, δpDqq ¥ Bu ¤ ε

Note that we could have write BεpP, δq instead of B to emphasize the fact that this bound
depends on P , δ and ε.
Next graph shows the density of LpP, δpDqq given P . Remember that LpP, δpDqq is a random
variable since D is a random variable. It allow us to compare the frequentist risk (mean)
approach vs. the PAC approach (tail bound).

Comparing Decision Rules

We would like to be able to compare rules together to figure out which one to choose. If we
could find a rule that dominates all the other rules, we would choose this rule. But often, we
can’t find such a rule. This is why there is no universally best procedure. The frequentist
approach is to analyze different properties of decision rules, and the user can then choose
which one they prefer according to which properties is better to them.

We now present two standard ways in statistics to reduce a risk profile curve to a scalar,
and so we can then compare rules together and get a notion of "optimality":

A) The Minimax Criteria:
Following this criteria, the optimal rule δ� is given by:

δ�minimax � arg min
δ

max
PPP

RpP, δq

In words, the minimax optimal rule is the rule who minimizes the risk we would obtain
in the worst possible scenario.
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B) Weighting:
This criteria requires that we define a weighting over Θ (can be interpreted as a prior).
Formally:

δ�weight � arg min
δ

»
Θ
RpPθ, δqπpθqdθ

Intuitively, when considering a certain rule, we are averaging the risk over all the possible
θ by putting more weight on the θ we believe are more important for the phenomenon
that we are studying. After that, we can compare them with each other and pick the
rule corresponding to the lowest average.

C) Bayesian Statistical Decision Theory:
The last two criteria were not making any use of the fact that we observed data (that
we observed a realization of D). The bayesian optimality criteria makes use of this
information. Before defining this criteria, let’s define what we call the bayesian posterior
risk:

RBpδ|Dq �
»

Θ
LpPθ, δqppθ|Dqdθ,

where ppθ|Dq is the posterior for a given prior πpθq.
The optimal rule following the bayesian criteria is:

δ�bayespDq � arg min
δ

RBpδ|Dq

As you recall, in the Bayesian philosophy, we treat all uncertain quantities with proba-
bilities. The posterior on θ summarizes all the information we need about the uncertain
quantity θ. As a Bayesian, the statistical loss Lpθ, aq then tells us how we can act op-
timally: we simply need to find the action that minimizes the Bayesian posterior risk
(as θ is integrated out, there is no more uncertainty about θ!). δ�bayes is thus the only
procedure to use as a Bayesian! Life is quite easy for a Bayesian (no need to worry about
other properties like minimax, frequentist risk, etc.). The Bayesian does not care about
what could happen for other D’s, it only cares that you are given a specific observation
D, and want to know how to act given D.
But a frequentist can still decide to analyze a Bayesian procedure from the frequen-
tist risk perspective. In particular, one can show that most Bayesian procedures are
admissible (unlike the MLE!). Also, one can show that the Bayesian procedure is the op-
timal procedure when using the weighted risk summary with weight function πpθq which
matches the prior ppθq. This can be seen as a simple application of Fubini’s theorem,
and from the diamond graph below:
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where pp
 |θq stands for D’s pdf conditional to θ, where pp
q � ³Θ pp
 |θqπpθqdθ and
where πp�|Dq denotes the posterior on θ. The bayesian procedure has the property that
it minimizes the weighted summary.

Exercise :
Given A � Θ and Lpθ, aq �‖θ � a‖2, show that δ�bayespDq � Erθ|Ds (the posterior mean).

Examples of Estimators

1. Maximum likelihood estimator (MLE)

δMLEpDq � θ̂MLE � arg max
θ

LDpθq
where LDpθq is the likelihood function given the observation D.

2. Maximum a posteriori (MAP)

δMAP pDq � θ̂MAP � arg max
θ
πpθ|Dq

where πpθ|Dq is the posterior distribution over all the possible θ.

3. Method of Moments
Suppose we have that D � pX1, ..., Xnq with Xi ∼iid Pθ being scalar random variables
where θ is a vector (i.e. θ � pθ1, ..., θkq). The idea is to find an bijective function h
that maps any θ to the "vector of moments" (i.e. MkpX1q � pErX1s,ErX2

1 s, ...,ErXk
1 sq).

Basically,
hpθq �MkpX1q

Since h is bijective, we can invert it,

h�1pMkpX1qq � θ

The intuition is that to approximate θ, we could evaluate the function h�1 using as
input the empirical moments vector (i.e. M̂kpX1q � pÊrX1s, ÊrX2

1 s, ..., ÊrXk
1 sq where

ÊrXj
1s � 1

n

°
i x

j
i for a given j). This would be our method of moments estimator :

h�1pM̂kpX1qq � θ̂MM
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Example:
Suppose that Xi ∼iid N pµ, σ2q. We have that,

ErX1s � µ

ErX2
1 s � σ2 � µ2

This defines our function h. Now, we invert the relation:

µ � ErX1s
σ2 � ErX2

1 s � E2rX1s
Then, we finally replace the moments by the empirical moments to get our estimator:

µ̂MM � ÊrX1s
σ̂2
MM � ÊrX2

1 s � Ê
2rX1s

Here, this MM estimator is the same as the ML estimator. This illustrates a property
of the exponential family (we will see this later in this class).
Note: The method of moment is quite useful for latent variable models (e.g. mixture
of Gaussian), see “spectral methods” or “tensor decomposition” methods in the recent
literature1.

4. ERM for prediction function estimation
In this context, A � F � YX and the decision rule is a function δ : D ÞÑ YX . F is
called the hypothesis space. We are looking for a function f� P YX that minimizes the
generalization error. Formally,

f� � arg min
fPYX

ED∼P rlpy, fpxqqs

Since we don’t know what is P , we can’t compute ED∼P rlpy, fpxqqs. As a replacement,
we consider f̂ERM an estimator of f�:

f̂ERM � arg min
fPF

Êrlpy, fpxqqs

where Êrlpy, fpxqqs � 1
n

°n
i�1 lpyi, fpxiqq. ERM stands for empirical risk minimizer

(here, the Vapnik risk).
1See: “Tensor Decompositions for Learning Latent Variable Models”, by Anandkumar et al., JMLR 2014

e.g.
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5.1.3 Convergence of random variables
Convergence in distribution

In general, we say that a sequence of random variable tXnu8n�1 converges in distribution
towards a random variable X if

lim
nÑ8

Fnpxq � F pxq @x

where Fn and F correspond the cumulative functions of Xn@n and of X respectively. In such
a case, we note Xn

dÝÑ X

Convergence in Lk

In general, we say that a sequence of random variable tXnu8n�1 converges in the Lk norm
towards a random variable X if

lim
nÑ8

Er ‖Xn �X‖kks � 0

In such a case, we note Xn
LkÝÑ X

Convergence in Probability

In general, we say that a sequence of random variable tXnu8n�1 converges in probability
towards a random variable X if

@ε ¡ 0, lim
nÑ8

P t‖Xn �X‖ ¥ εu � 0

In such a case, we note Xn
pÝÑ X.

Note: It turns out that L2 convergence implies convergence in probability. (The reverse
implication isn’t true)

5.1.4 Properties of estimator
Suppose that Dn � pX1, ..., Xnq and that Xi ∼iid Pθ. We will note θ̂n � δnpDnq an estimator
of θ. The subscript stands to emphasize the fact that the estimator’s value depends on the
number of observation n.

Bias of an estimator

Biaspθ̂nq � Erθ̂n � θs
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Standard Statistical Consistency

We say that an estimator θ̂n is consistent for a parameter θ if θ̂n converges in probability
toward θ (i.e. θ̂n

pÝÑ θ).

L2 Consistency

We say that an estimator θ̂n is L2 consistent for a parameter θ if θ̂n converges in L2 norm
toward θ (i.e. θ̂n L2ÝÑ θ).

Bias-variance decomposition

Consider Lpθ, θ̂nq �
∥∥∥θ � θ̂n

∥∥∥2

2
. We will express the frequentist risk as a function of the bias

and variance of θ̂n.

RpPθ, δnq � ED∼Pθr
∥∥∥θ � θ̂n

∥∥∥2s (5.1)

� Er
∥∥∥θ � Erθ̂ns � Erθ̂ns � θ̂n

∥∥∥2s (5.2)

� Er
∥∥∥θ � Erθ̂ns

∥∥∥2s � Er
∥∥∥Erθ̂ns � θ̂n

∥∥∥2s � 2Er xθ � Erθ̂ns,Erθ̂ns � θ̂nys (5.3)

� Er
∥∥∥θ � Erθ̂ns

∥∥∥2s � Er
∥∥∥Erθ̂ns � θ̂n

∥∥∥2s � 2xθ � Erθ̂ns,Erθ̂ns � Erθ̂nsy (5.4)

�
∥∥∥θ � Erθ̂ns

∥∥∥2 � Er
∥∥∥Erθ̂ns � θ̂n

∥∥∥2s (5.5)

�
∥∥∥biaspθ̂nq∥∥∥2 � V arrθ̂ns (5.6)

Remark: Other loss functions would have potentially led to a different function of the bias
and the variance, thus expressing a different priority between the bias and the variance.

The James-Stein estimator

The James-Stein estimator for estimating the mean of a Xi ∼iid Ndpµ, σ2Iq dominates
the MLE estimator for the squared loss when d ¥ 3 (and thus showing that the MLE is
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inadmissible in this case). It turns out that the James-Stein estimator is biased, but that its
variance is sufficiently smaller than the MLE’s variance to offset the bias.

Properties of the MLE

Assuming sufficient regularity conditions on Θ and ppx; θq, we have:

1. Consistent: θ̂MLE
pÝÑ θ

2. CLT:
?
npθ̂MLE � θq dÝÑ N p0, Ipθq�1q where I is the Fisher information matrix .

3. Asymptotic optimality:
Among all unbiased estimator of a scalar parameter θ, θ̂MLE is the one with the lowest
variance asymptotically.
This results follows from the Cramér-Rao bound result, which can be stated like this:
Let θ̂ be an unbiased estimator of a scalar parameter θ. Then we have that,

V arrθ̂s ¥ 1
Ipθq

Note that this result can also be stated in the multivariate case.

4. Invariance to reparametrization:
Suppose we have a bijection f : Θ ÞÑ Θ, then,

yfpθqMLE � fpθ̂MLEq

This result can be generalized to the case where f isn’t a bijection.
Suppose g : Θ ÞÑ Λ (bijective or not). We define the profile likelihood:

Lpηq � max
θ|η�gpθq

ppdata; θq

Let also define the generalized MLE in this case as:

η̂MLE � arg max
ηPgpΘq

Lpηq

Then we have that
η̂MLE � gpθ̂MLEq

this is called a plug-in estimator because you are simply “plugging in” the value θ̂MLE

in the function g to get its MLE.
Examples

(a) pσ2
MLE � pσ̂MLEq2

(b) p{sin σ2qMLE � sinpσ̂2
MLEq

5-10

https://en.wikipedia.org/wiki/Fisher_information#Matrix_form
https://en.wikipedia.org/wiki/Cram%C3%A9r-Rao_bound

	Statistical Decision Theory
	The Formal Setup
	Procedure Analysis
	Convergence of random variables
	Properties of estimator


