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Can entanglement eliminate
the need for communication?
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This is interesting when
(a,b) depends on (X,Y)
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In other words, when
X—a Y—b
is classically impossible without communication
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Quantum Versus Classical

Best classical protocol:
Correct with probability 75%

Best quantum protocol:
Always correct!
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Quantum Protocol
Consider three-party entangled state |\P)
000) + [001) + [010) + [100) — [011) — [101) = [110) = [1171)

The qubits are sent to Albert, Boris & Nathan

Each party applies a Walsh-Hadamard Transform H
to his qubit if and only if his input is 1
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N-Party Generalization

Best classical protocol:
Correct with probability 50% + 272

Best quantum protocol:
Still always correct!
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a=-b <> X=VY

Too easy!
Alice outputs a=X
and Bob outputs b=Y
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a=-b <> X=VY

Condition to make it interesting
a and b must be exponentially shorter than X and Y
Example: X and Y are strings of 16 bits
but a and b are strings of only 4 bits
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Good news: this cannot be done classically
without communication between Alice and Bob.
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Alice

a=-b €< X=VY Bo

Good news: this cannot be done classically
without communication between Alice and Bob.

Bad news: this cannot be done without
communication even if Alice and Bob are entangled!
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Promise to get quantum advantage
Either X =Y or X and Y differ
in exactly half the bit positions
Example: X = 0100110110110100
Y =0110000010001101
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a=-b €< X=VY Bo

Promise to get quantum advantage
Either X =Y or X and Y differ
in exactly half the bit positions
This is still classically impossible
But entanglement makes it possiblel



Deutsch-Josza algorithm

Deutsch-Josza problem:
Given f:{0,1}" — {0, 1}, decide if f is constant (Vx,y, f(x) = f(y)) or
balanced (|f~1(0)| = [/~1(1)]).

Deutsch-Josza algorithm(f)
o |4) = HO"F'H®" |0)
e m = Measure(|y))
e if m =0 answer CONSTANT otherwise BALANCED

Deterministic classical algorithm: 2"~1 4+ 1 evaluations of f.

46



Example: X = 0100110110110100
Y = 0110000010001101

z=0010110100111001
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Spooky Protocol

e Alice and Bob share n Bell states
)= X o
2€{0,1}"
Let m = 2™,

e Alice receives x € {0,1}™
Bob receives y € {0,1}™.

o Alice performs Uy : |2) — (=1)" |2)
Bob performs Up : |z) — (—1)% |z)
for each z € {0,1}".

e They both the apply Walsh—-Hadamard transform H
H H
0) = Loy + L1y 1) A Ljo) — L)

to each of their n qubits.

re{0,1}"

e They measure their registers:
Alice obtains a and

Bob obtains b.




Analysis

° Z ‘Z>|Z> (forget normalization 2—”/2)
z€{0,1}"

_ ;j (;j(lyz@yz@z'(a@b)) |a)[D)




Equality Case: a =b

e The amplitude « of |a)|b), up to normalization, is

o = E : :Uz@yz@z (adb)

2€{0,1}"
_ Z (_1>z-(a@b)
ze{0,1}"
e Thisisa=0when a® b +#0.

e Thus the probability that a # b is 0,
and therefore a = b with certainty.




Balanced Case: dy(x,y) = m/2

e The amplitude « of |a)|b), up to normalization, is

o — Z (_D:vz@yz@z-(a@b)

z€{0,1}n

= Z (—=1)"%¥  whena® b =0
z2e{0,1}"
=0

e Thus the probability that a = b is 0,
and therefore a # b with certainty.
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Question for Bob: column 2

odd



Answers must match!

0o || 1 |even

0

odd
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0 1 even
0 0 even
1 0 even

odd odd



Magic Square

Cheatin
0 | 1
0 | 0 | O
1 | 0

odd odd

even

even

even
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Classically: without communication
Alice and Bob cannot succeed with a
probability better than 8/9



Magic Square

Classically: without communication
Alice and Bob cannot succeed with a
probability better than 8/9

I they are entangled, Alice and Bob
can succeed every timel!



5.2. Quantum Winning Strategy. The quantum winning strategy for the magic
square game is not as simple as the classical impossibility proof. First, Alice and
Bob share the entangled state

) = ]0011) — £]0110) — 2|1001) + 3|1100)

The first two qubits belong to Alice and the last two to Bob. Upon receiving
their inputs = and y, Alice and Bob apply unitary transformations A, and B,,
respectively, according to the following matrices.



Consider for example inputs x = 2 and y = 3. After Alice and Bob apply As
and Bjg, respectively, the state evolves to

(A @ B3)|y) = ﬁ [/0000) — |0010) — [0101) + |0111)
+[1001) + [1011) — [1100) — |1110)]

After measurement, Alice and Bob could obtain 10 and 01, for instance. In that
case, Alice would complete with bit 1 so that her output ¢ = 101 has even parity
and Bob would complete with bit 0 so that his output b =010 has odd parity.
Xavier and Yolande will be satisfied with the answer since both Alice and Bob
agree that the third entry of the second row is indeed the same as the second entry
of the third column: a3 = by = 1. It is easy to check that the seven other possible
answers that Alice and Bob could have given on this example are all appropriate.
The verification that this quantum strategy wins also on the other eight possible
questions is tedious but straightforward.
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For Further Reading

Quantum Pseudo Telepathy
Foundations of Physics 35(11)
November 2005

(Preliminary: quant—ph/0407221)





