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Consider three-party entangled state Ψ

000  + 001  + 010  + 100  − 011  − 101  − 110  − 111

The qubits are sent to Albert, Boris & Nathan

Each party applies a Walsh-Hadamard Transform H
to his qubit if and only if his input is 1 
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Best classical protocol:
       Correct with probability 50% + 2–n/2

Best quantum protocol:
       Still always correct!



Deutsch-Jozsa
Spooky



Deutsch-Jozsa
Spooky

X Y



Deutsch-Jozsa
Spooky

X Y

a b

˛



Deutsch-Jozsa
Spooky

X Y

a b

˛

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Too easy!
Alice outputs a=X

and Bob outputs b=Y

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

X Y

Too easy!
Alice outputs a=X

and Bob outputs b=Y

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Condition to make it interesting
a and b must be exponentially shorter than X and Y

Example: X and Y are strings of 16 bits
but a and b are strings of only 4 bits

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Condition to make it interesting
a and b must be exponentially shorter than X and Y

Example: X and Y are strings of 16 bits
but a and b are strings of only 4 bits

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Condition to make it interesting
a and b must be exponentially shorter than X and Y

Example: X and Y are strings of 16 bits
but a and b are strings of only 4 bits

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Good news: this cannot be done classically
without communication between Alice and Bob.

Bad news: this cannot be done without
communication even if Alice and Bob are entangled!

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Good news: this cannot be done classically
without communication between Alice and Bob.

Bad news: this cannot be done without
communication even if Alice and Bob are entangled!

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Promise to get quantum advantage
 Either X = Y or X and Y differ
in exactly half the bit positions

YExample: X = 0100110110110100
XExample: Y = 0110000010001101

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Promise to get quantum advantage
 Either X = Y or X and Y differ
in exactly half the bit positions

YExample: X = 0100110110110100
XExample: Y = 0110000010001101

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Promise to get quantum advantage
 Either X = Y or X and Y differ
in exactly half the bit positions

YExample: X = 0100110110110100
XExample: Y = 0110000010001101

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Promise to get quantum advantage
 Either X = Y or X and Y differ
in exactly half the bit positions

 This is still classically impossible
XExample: Y = 0110000010001101

a = b X = Y



Deutsch-Jozsa
Spooky

X Y

a b

Promise to get quantum advantage
 Either X = Y or X and Y differ
in exactly half the bit positions

 This is still classically impossible
EBut entanglement makes it possible!E

a = b X = Y



Deutsch-Josza algorithm

Deutsch-Josza problem:

Given f : {0,1}n → {0,1}, decide if f is constant (∀x, y, f(x) = f(y)) or

balanced (|f−1(0)| = |f−1(1)|).

Deutsch-Josza algorithm(f)

• |ψ〉 = H⊗nF ′H⊗n |0〉

• m = Measure(|ψ〉)

• if m = 0 answer CONSTANT otherwise BALANCED

Deterministic classical algorithm: 2n−1 + 1 evaluations of f .

46



YExample: X = 0100110110110100
XExample: Y = 0110000010001101
Xexample         ---------------------------
XExample: z = 0010110100111001
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Figure 6.1: Circuit for the Deutsch–Jozsa algorithm to distinguish between con-
stant and balanced functions. The function computed by C is constant if and only
if z = 0n after measurement. Note that this circuit reduces precisely to Deutsch’s
algorithm from Section 5.4 in the case n = 1, which is not surprising since a one-bit
to one-bit function f is constant if f(0) = f(1) and balanced otherwise.

modest but genuine improvement over any classical approach, which would
have to run twice a given classical circuit that implements either f or f̃ .
The Deutsch–Jozsa algorithm is a generalization of this idea to functions
f : {0, 1}n → {0, 1} that yields a spectacular improvement over all possible
deterministic classical techniques.

We say that function f : {0, 1}n → {0, 1} is constant if f(x) = f(y) for
all x, y ∈ {0, 1}n, whereas it is balanced if f(x) = 0 for exactly half the pos-
sible inputs. In particular, fy(x) = x·y is constant if y = 0n and balanced
for any nonzero y ∈ {0, 1}n, where x·y is the inner product between bit
strings—see Section 5.7. Assume we are promised that f is either con-
stant or balanced, and our task is to determine which is the case. Assume
furthermore that our only source of knowledge about f comes from a
classical circuit sealed into a tamper-proof box that computes it. If we
are required to answer with absolute certainty and if f is in fact con-
stant, we must query the circuit on 2n−1 + 1 distinct inputs before we
can issue our verdict in full confidence: any smaller number of identi-
cal values for f(x) leaves open the possibility that the function is bal-
anced. For example, if n = 3 and our first 2n−1 = 4 queries tell us that
f(000) = f(001) = f(011) = f(101) = 0, say, we know from the promise
that either f(010) = f(100) = f(110) = f(111) = 0 if the function is con-
stant, or f(010) = f(100) = f(110) = f(111) = 1 if the function is balanced,
but we cannot tell for sure which is the case without a fifth query.
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Spooky Protocol

• Alice and Bob share n Bell states

|Φ+
n 〉 =

∑

z∈{0,1}n

2−n/2 |z〉|z〉 .

Let m = 2n.

• Alice receives x ∈ {0, 1}m
Bob receives y ∈ {0, 1}m.

• Alice performs UA : |z〉 → (−1)xz |z〉
Bob performs UB : |z〉 → (−1)yz |z〉
for each z ∈ {0, 1}n.

• They both the apply Walsh–Hadamard transform H

|0〉 H7−→ 1√
2
|0〉 + 1√

2
|1〉 |1〉 H7−→ 1√

2
|0〉 − 1√

2
|1〉

to each of their n qubits.

|z〉 H7−→
∑

x∈{0,1}n

2−n/2 (−1)z·x|x〉

• They measure their registers:
Alice obtains a and
Bob obtains b.



Analysis

•
∑

z∈{0,1}n

|z〉|z〉 (forget normalization 2−n/2)

•
∑

z

(−1)xz (−1)yz |z〉|z〉

=
∑

z

(−1)xz⊕yz |z〉|z〉

•
∑

z

(−1)xz⊕yz

(

∑

a

(−1)z·a|a〉
)(

∑

b

(−1)z·b|b〉
)

=
∑

a,b

(

∑

z

(−1)xz⊕yz⊕ z·(a⊕b)
)

|a〉|b〉



Equality Case: a = b

• The amplitude α of |a〉|b〉, up to normalization, is

α =
∑

z∈{0,1}n

(−1)xz⊕yz⊕ z·(a⊕b)

=
∑

z∈{0,1}n

(−1)z·(a⊕b)

• This is α = 0 when a⊕ b 6= 0.
• Thus the probability that a 6= b is 0,

and therefore a = b with certainty.



Balanced Case: dH(x, y) = m/2

• The amplitude α of |a〉|b〉, up to normalization, is

α =
∑

z∈{0,1}n

(−1)xz⊕yz⊕ z·(a⊕b)

=
∑

z∈{0,1}n

(−1)xz⊕yz when a⊕ b = 0

= 0

• Thus the probability that a = b is 0,
and therefore a 6= b with certainty.
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Magic Square

Classically: without communication
Alice and Bob cannot succeed with a
probability better than 8/9

If they are entangled, Alice and Bob
can succeed every time!



16 GILLES BRASSARD, ANNE BROADBENT AND ALAIN TAPP

5. The Magic Square Game

The magic square game is a two-player pseudo-telepathy game that was presented
by Padmanabhan Aravind [?, ?], who built on work by Mermin [?]. The most
interesting feature of this game is that it is extremely easy to show that there
cannot be a classical winning strategy (see Section 5.3). It follows that a successful
implementation of the quantum winning strategy (see Section 5.2) would convince
any observer that something classically impossible is happening, with no need for
the observer to understand why the quantum strategy works.

5.1. The Game. A magic square is a 3× 3 matrix whose entries are in {0, 1}, with
the property that the sum of each row is even and the sum of each column is odd.
Such a square is magic because it cannot exist! Indeed, suppose we calculate the
parity of the nine entries. According to the rows, the parity is even, yet according
to the columns, the parity is odd. This is obviously impossible.

The task that the players face while playing the game is the following: Alice is
asked to give the entries of a row x ∈ {1, 2, 3} and Bob is asked to give the entries
of a column y ∈ {1, 2, 3}. The winning condition is that the parity of the row must
be even, the parity of the column must be odd, and the intersection of the given
row and column must agree. It is an interesting feature of this game that it does
not require a promise: all nine possible questions are legitimate.

5.2. Quantum Winning Strategy. The quantum winning strategy for the magic
square game is not as simple as the classical impossibility proof. First, Alice and
Bob share the entangled state

|ψ〉 = 1
2 |0011〉 − 1

2 |0110〉 − 1
2 |1001〉+ 1

2 |1100〉

The first two qubits belong to Alice and the last two to Bob. Upon receiving
their inputs x and y, Alice and Bob apply unitary transformations Ax and By,
respectively, according to the following matrices.

A1 =
1√
2

[ i 0 0 1
0 −i 1 0
0 i 1 0
1 0 0 i

]
, A2 =

1
2

[ i 1 1 i
−i 1 −1 i

i 1 −1 −i
−i 1 1 −i

]
, A3 =

1
2

[−1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

]

B1 =
1
2

[ i −i 1 1
−i −i 1 −1

1 1 −i i
−i i 1 1

]
, B2 =

1
2

[−1 i 1 i
1 i 1 −i
1 −i 1 i

−1 −i 1 −i

]
, B3 =

1√
2

[ 1 0 0 1
−1 0 0 1

0 1 1 0
0 1 −1 0

]
Then, Alice and Bob measure their qubits in the computational basis. This

provides 2 bits to each player, which are the first 2 bits of their respective output
a and b. Finally, Alice and Bob determine their third output bit from the first two
so that their parity condition is satisfied.

Consider for example inputs x = 2 and y = 3. After Alice and Bob apply A2

and B3, respectively, the state evolves to

(A2 ⊗B3)|ψ〉 = 1
2
√

2

[
|0000〉 − |0010〉 − |0101〉+ |0111〉

+|1001〉+ |1011〉 − |1100〉 − |1110〉
]
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Then, Alice and Bob measure their qubits in the computational basis. This

provides 2 bits to each player, which are the first 2 bits of their respective output
a and b. Finally, Alice and Bob determine their third output bit from the first two
so that their parity condition is satisfied.

Consider for example inputs x = 2 and y = 3. After Alice and Bob apply A2

and B3, respectively, the state evolves to

(A2 ⊗B3)|ψ〉 = 1
2
√

2

[
|0000〉 − |0010〉 − |0101〉+ |0111〉
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After measurement, Alice and Bob could obtain 10 and 01, for instance. In that
case, Alice would complete with bit 1 so that her output a = 101 has even parity
and Bob would complete with bit 0 so that his output b = 010 has odd parity.
Xavier and Yolande will be satisfied with the answer since both Alice and Bob
agree that the third entry of the second row is indeed the same as the second entry
of the third column: a3 = b2 = 1. It is easy to check that the seven other possible
answers that Alice and Bob could have given on this example are all appropriate.
The verification that this quantum strategy wins also on the other eight possible
questions is tedious but straightforward.

5.3. Classical Players. The simple proof that a winning classical strategy cannot
exist goes as follows. A deterministic classical strategy would have to assign definite
binary values to each of the nine entries of the magic square, which is impossible.
Therefore, there can be no deterministic classical winning strategy. It follows from
Theorem 2 that there is no classical winning strategy, even probabilistic. Using
Lemma 3, it is also straightforward to show that ω̃(G) = ω(G) = 8/9, where G
stands for the magic square game.

5.4. Related Work. There are other pseudo-telepathy games that are related to
the magic square game. Adán Cabello’s game [?, ?] does not resembles the magic
square game on first approach. However, closer analysis reveals that the two games
are totally equivalent!
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