
Implementing a Graphical User Interface for SystemC

Authors : Michel Reid1, Luc Charest1, A Tsikhanovich1, E. M. Aboulhamid1, Guy Bois2

1 : Université de Montréal, 2 : École Polytechnique
{reid, aboulham}@iro.umontreal.ca

Abstract

SystemC is a new open source library in C++ for

developing models of software algorithms, hardware
architecture and system-level designs. Although SystemC
is very rich in possibilities for Hardware Description, the
simulation is made via a console application, thus textual
only, hence it is cumbersome to view the results. Our
objective is to develop a GUI for SystemC to provide a
more intuitive representation of simulation results.

We will document our experiment and compare the
cost, in terms of simulation time, of our solution.

1. Introduction

Several companies (see www.systemc.org for the list)

pooled their expertise and formed the Open SystemC
Initiative (OSCI) and, in September 1999, released a first
version of SystemC, a C++ library with an Open
Community Licensing model [1][3].

Since then there have been several new releases and it
seems to be gaining in popularity. The Open SystemC
Initiative also offers a commercial license, so companies
can sell products based on SystemC and include the
SystemC code as part of those products [7].

Presently, it is possible to generate a waveform trace
available only after the simulation has ended and must be
viewed by, usually, a tool similar to Synopsys Waveform
Viewer [1]. For feedback during the course of the
simulation, the user has to incorporate calls to printf or
cout in the design itself. Thus it is textual only, hence
very difficult to properly interpret the results. If the user
decides to view additional results, he must change his
model and recompile the code

Several vendors are now incorporating support for
SystemC designs in their already existing simulation tools
and, at least Synopsys has added the possibility to
synthesize SystemC with their tools.

SystemC being roughly a year old, and having yet to
impose itself as a de-facto standard, buying a simulation
tool at great cost may not be an incentive for companies to
try out SystemC.

Our objectives are :
• Since SystemC is an open source library for C++ and

can be compiled by a multitude of C++ compiler on
several platforms, we take advantage of free graphical
libraries, such as QT [5] which is based on OpenGL,
to build a GUI (Graphical User Interface) to view
the results at no (or minimal) cost. This will shorten
the design time and allow the GUI to evolve in an
open environment too.

• Seamless use of the GUI by the designer meaning that
the designer can use the present SystemC models with
minimal change to the syntax. For example, we could
introduce a new class of signals aware of the
interface, but this will change the modeling style of
the designer and the resulting model could not be
exchanged easily.

• Minimal cost in simulation time and increased
comprehension of simulation results.

• SystemC is constantly evolving, it would be useful to
develop a loosely coupled GUI to SystemC so that
both of them can evolve independently but cooperate
afterwards.

We have followed a methodology [10] that allows us to
make as few change as possible to the SystemC source
code. It consists in adding a new class to SystemC that
will act as an interface with our application. Apart from
this new class, changes to the original classes is limited to
a few tests to check if there is an interface and if so, a call
to a method to notify it of a change in the data value.

As a first experiment, we wanted to be able to link a
GUI window, to which we could add menus to control the
simulation, display the simulation time, a list of modules
and a list of signals. Furthermore, we wanted the user to
be able to choose the signals he wanted to display and link
it to a new signal window.

From this experiment we then moved on to develop a
methodology to link a broader type of third party
software [10]. Using design patterns developed for
software engineering, more particularly the observer
pattern [8], we implemented a class that will serve as a
liaison between the simulation and a tool. This enables the
tool to monitor the simulation, add limited control such as

start, step, stop, while restricting the possibility to
change the simulation data values.

Section 2 presents an overview of SystemC and our test
case application. Section 3 introduces SystemC
architecture. In section 4 to 7, presents our solution to link
the SystemC simulation with our GUI. The GUI prototype
is described in section 8. Section 9 describes problems
encountered while trying to improve the GUI. We present
our benchmark and results in section 10. Section 11
concludes this paper.

2. Overview of SystemC

SystemC is not an extension of C++, it does not add

any new syntax to C++. It is rather a new C++ class
library, therefore it is just a matter of learning how to use
the new classes to be able to model hardware design.

These classes enable the user to define modules,
processes, add communication through ports and signals
that can handle a multitude of data types, ranging from
bits, bit vectors, standard C++ types to user define types
like structures. They also introduce timing, concurrency
and reactive behavior [3].

Using SystemC requires knowledge of C and very little
of C++. The approach is somewhat similar to VHDL or
Verilog.

This ensures that, a system level designer should be
able to use SystemC rapidly.

Some of the advantages of the SystemC design
methodology are :

• The design is written in only one language and
does not need to be ported to another HDL
possibly introducing discrepancies between the
two version of the model.

• The system can be modeled at a behavioral or
architectural level then refined iteratively to the
RTL.

• Testbenches can be reused for all refinements of
the design.

However, keeping the use of C++ to a minimal has a
drawback , it limits the possibility of taking advantage of
the Object Oriented approach which would facilitate
reuse, contributing to shorter design times, lower
development costs and increased reliability [9].

During the development of our application, we used a
model of the DLX processor [11] as a test case. This
processor is a text book example of a RISC processor with
a 5 stage pipeline using forwarding to avoid data hazards.
In appendix B we illustrate the pipeline and discuss its
implementation. We also give, in appendix C, sample
code of one stage (MEM) in VHDL and SystemC to show
that the language semantics are similar.

3. SystemC architecture

While, from the users point of view, SystemC is mostly

a C type syntax, its source code takes full advantage of
C++ OOP possibilities.

Figure 1 illustrates its object structure and the relation
between objects. It is an abbreviated UML representation
of SystemC. Note that italic means that a class is abstract
or a method is virtual. A member preceded by "+", "-", or
"#" means the member is public, private, or protected
respectively.

The base class for signals, modules and clocks is

sc_object, it contains basic methods and properties for
identifying and classifying SystemC object.

sc_signal_base is a specialization of
sc_object which contains base methods and members
for signals, it is an abstract class so it cannot be
instantiated, only derived. sc_signal inherits from
sc_signal_base, it is a specialization of the base
class which has data of a template type and methods to
manipulate this data.

Class sc_simcontext is to our knowledge the
simulation kernel, it contains methods like crunch()
which loops through all the delta cycles necessary to
advance to the next clock edge. This class also contains
the list of signals to update, the simulation time and
methods to start, stop or step the execution.

+update()

-created_by : sc_object*

sc_signal_base

#update()
+read() : class T

sc_signal

class T

+first_object() : sc_object*
+next_object() : sc_object*

sc_object_managersc_port_manager

+name() : const char*
+kind() : const char*

sc_object

-port_vector:sc_pvector*

sc_module

sc_port

+time_stamp() : double
+get_port_manager() : sc_port_manager*
+get_object_manager() : sc_object_manager*

-signals_to_update : sc_signal_base* *
-port_manager : sc_port_manager*
-object_manager : sc_object_manager*

sc_simcontext

Figure 1 : Partial SystemC architecture

4. Controlling the simulation

To achieve control, we need to change the call to

SystemC sc_start(), that is made in the design model
sc_main(), by the creation of our GUI window. Once
the change is made, we can use a simulation menu to call
SystemC functions sc_start() from there, using the
appropriate step size as a parameter. See Appendix A for
an example of the necessary changes to the sc_main().

Obtaining the simulation time is easy, using SystemC
method sc_time_stamp(.) The value is then
displayed in an appropriate QT widget [5].

We can get the list of the design’s modules directly
from SystemC. The SystemC class sc_simcontext
contains this information and has methods to access this
information.

We used the following methods :

sc_get_curr_simcontext();
sc_simcontext::first_object();
sc_simcontext::next_object();
sc_object::name();
sc_object::kind();

Numerous SystemC classes, such as sc_signal
and sc_module, are derived from the sc_object
class. Using the first_object() and
next_object() methods allows us to access the list
of those objects, the kind() method permits us to
distinguish between modules and other objects.

5. Accessing the list of the design signals

We can get the list of signals in the same way.

Unfortunately the list contains pointers towards objects of
sc_signal_base type, which do not contain any
data. Only objects of sc_signal type, which
specializes sc_signal_base, contain data. This value
is of a template type.

An elegant solution is obtained by abstraction,
SystemC designers used an sc_signal_base as an
abstract class for the sc_signal and so they were able
to create a list of « sc_signal_base * ». When they
insert a pointer toward any signal type derived from
sc_signal_base, its type is cast automatically.

The problem we face is that even though we now have
a pointer to an sc_signal_base, our GUI is not aware
of what type the signal is. If we could know the type of
signal, we could type cast the signal to its original form,
(e.g.: (sc_signal<bool> *) signal) and then use
any method from the original signal type.

Because SystemC needed to update all the signals
using a general pointers list, they defined a virtual

update(void) in the sc_signal_base class and
by redefining a update(void) in SystemC
sc_signal class; when this method is called from a
generalized pointer, the appropriate update() is called
according to the sc_signal data type and it is the
signal responsibility to update itself.

The problem is that the read() method, which
returns the actual value of the signal is not virtual and is
not in the base class. The reason is, that at no point,
SystemC needs to read or modify the value of the signal.
The signal is read and modified by the user who actually
knows which type of signal he is dealing with since he
created the signal. We would have liked to implement a
new virtual read(), but this would require virtual
template methods, which are forbidden in C++ [6].

We opted for the declaration of a new pure virtual
method, notify_interface(), in the
sc_signal_base class, which must be
redefined in derived classes. When SystemC performs its
crunch() cycle, we added a call to
notify_interface() for every modified signals. So
from there, it is the responsibility of the signal itself to
notify the GUI of any change of status using this method.
Since the signal knows its data type, it is an easy task to
pass the value of the signal with the appropriate data type
to the GUI.

6. Notifying the interface

As stated previously, it is the signal responsibility to

notify the GUI, but how can it notify the interface? One
possibility is sending a message via a method to the GUI.
Since SystemC is a standalone library and since we want
our GUI to be independent from SystemC, how can we
build the SystemC library without having to supply the
GUI code to SystemC? Sending a message is usually done
by calling a known method of the recipient class. How can
we call this method if we do not supply the recipient
class?

In order to establish the communication between
SystemC and the GUI, we defined an abstract class called
sc_interface. We named this class following the
general unwritten naming convention of SystemC. This
class is abstract because one (in this case all) of its
member methods is (are) pure virtual(s), so the class
cannot be instantiate [2]. We do not want the class to be
instantiated because this class has only one purpose:
defining a standard for implementing derived classes. The
derived class must implement every abstract method (pure
virtual) before it can be instantiated.

Once the interface class is well defined, we can
compile SystemC and have it call methods that will be
implemented later, in the GUI. In our case, the
notify_interface() method of the sc_signal

class calls the appropriate update_signal() of the
sc_interface class according to the data type. Since
we cannot define virtual template methods [6], we were
forced to « unroll » the template by prototyping every
method with data type that the template would normally
generate.

7. Interacting SystemC and the GUI

We have also to define the way the sc_interface
interacts with its derived class and SystemC. This is due to
the fact that we cannot supply a reference of the derived
class of sc_interface to SystemC since the class is
not yet defined when we construct the SystemC library.
Therefore we have to provide a pointer to the instance of
the derived class, this is accomplished by having a static
pointer in the abstract class to point to the instance of the
derived class. The static member is common to all
instances of the class (and derived classes) and can be
used without having any instantiation of the class. We
have implemented a method (namely sc_interface::
bind()) that binds the derived interface to SystemC by
setting this static member (bound_instance). In our
case, the derived class of sc_interface is named
my_sc_interface. So upon instantiation of
my_sc_interface, the constructor automatically calls
the bind method.

When SystemC executes initial_crunch() and
the crunch() loop, a call to
sc_interface::is_bound() is made, the return
value indicates whether the user has attached an interface
of his own or not. If a custom sc_interface is bound,
the message sc_signal::notify_interface() is
generated, and a call to sc_interface::
get_bound_instace() is issued to get the bound
interface. The method update_signal() of this
interface is then called (via polymorphism and
inheritance) with the proper data type.

We have yet to treat signals of a user defined type. For
the moment, our method implies that the user has to make
changes to the sc_interface class and implement
method update_signal() in the derived class for
those signals.

8. GUI prototype

In our development, we chose Qt because it is a fully
object-oriented, cross-platform C++ GUI application
framework providing application developers with all the
functionality needed to build GUIs [2]. Qt is available on
a wide range of platforms including Linux and it is free
for development of free/Open Source software under
Unix/X11. Qt offers objects like menus, windows,
buttons, etc. We also used the STL library [4] when

objects like lists, queues, and vectors were needed. This
results in minimizing time for development as well as
increasing code efficiency.

For our first working prototype, we display Boolean
signals traced and listed in windows as showed in
Figure 2. As for integer signals, we have only listed them
while showing the ability to customize the way each type
of signals is rendered. We can do the same for each of the
fundamentals C++ type but there is still work to do for the
more complex SystemC basic types.

For now, signal changes are memorized only if the user
asked to visualize that signal. If the user has not selected a
signal, its value is not recorded. The simulation speed is
not affected by unselected signals. As soon as the user
asks for a signal, the recording starts.

Our GUI system is compiled independently from the
end user’s project and is linked as a library. Only small
modifications must be made to end users code to create
the main window and then pass the execution control to it.
If the user wants to be able to debug his signals with
meaningful names, he must also attribute a name to each
of his signal by modifying his code to use an
undocumented SystemC signal constructor. Modifications
to the user’s model are illustrated in appendix A.

9. Signals and ports hierarchy

We are trying to improve the presentation of the

simulation results by displaying the signals and ports by
the modules that use them. Unfortunately, we have yet to
succeed.

We have tried getting the information on the module
from the signal itself. Class sc_signal_base has a
member created_by which is a pointer to the
sc_object that created the signal.

Strangely, that member is not initialized in most of the
signals we have traced. For those who were,

Figure 2 : Tracing a boolean signal

created_by points to a sc_object whose members
name and kind are not initialized. Thus, we have
abandoned that approach.

Another avenue which seems promising is approaching
the problem from the modules point of view. Class
sc_module has a member called port_vector. This
seems to be a vector containing a list of the modules ports.
Our next step is to explore this possibility.

10. Cost in simulation speed

In order to evaluate the effect on simulation speed, we
built a small model in SystemC, it contains output, a
bool signal that changes value every positive clock edge,
and the clock. We calculate the elapsed time between
every cycle of the simulation and the starting time. For
each test, we simulated for exactly 100 cycles in one
uninterrupted step.

We have tested the following cases :
• No modification to SystemC and no feedback

(printf, cout or wave tracing).
• SystemC modified to get the signals but interface not

bound.
• Interface bound but no signal recording.
• No GUI, output signal traced using cout

redirected to a file.
• No GUI, output signal traced using cout to

console.
• No GUI, output signal traced in a vcd file.
• Output signal recorded by GUI.
• Clock and output signals recorded by GUI.

We have found that, when no signal is traced, the
modified SystemC is about the same speed as the original
SystemC. While binding the interface will take 20% more
time than the original SystemC as shown in Figure 3.

When tracing one signal (output), we observed that
recording a signal leads to about 30% more time for the
simulation then a cout that is redirected in a file.
Whereas tracing the signal in a VCD file takes 320% the
redirected cout time. These results are illustrated in
Figure 4.

It appears that we have a significant increase when
using the GUI, however, we gain in flexibility of viewing
the results. Simulating with cout may lead to loss of first
results if the amount of output lines exceeds the number
available in the console window, also, if we need to keep
track of several signals, their output will be all in the same
window and might be difficult to sort out, as such, a GUI
that permits to view signal by signal is an improvement.

Also, since we have tested using cout that are
redirected to a file, this means that results can be viewed
after the simulation, when the output is written directly in
the console, the simulation time increases dramatically, to
about 280% of the time for the redirected output.

11. Conclusion

We have described an experiment of adding a GUI to

SystemC simulation and offered a brief description of our
implementation to aid developers who wish to create their
own interface.

We have found that in its official form, SystemC lacks
in its accessibility to the data, every value being private.
Fortunately, it is an open system, so it is possible to
modify the source code to suit our needs.

We have found that our GUI seems to require less
simulation time than most way of obtaining a signal
results, except for a cout that is redirected in a file which
can be viewed only after the simulation. In that case, we

0

100

200

300

400

500

600

1 8 15 22 29 36 43 50 57 64 71 78 85 92

E
la

p
se

d
 t

im
e

a) without modification b) no interface bound

c) bound no recording

 c

b

a

Figure 3 : No signal tracing

0

100

200

300

400

500

600

700

800

900

1 12 23 34 45 56 67 78 89

E
la

p
se

d
 t

im
e(

u
s)

a) without
modification

b) 1 signal
recording

c) 1 signal
vcd wave
tracing

d) 1 signal
cout
redirected

 b

d

c

a

Figure 4 : Keeping track of 1 signal

think that the extra time is a good trade-off for a better
flexibility in viewing the results.

We plan on generalizing our interface class to link
SystemC to other applications by changing SystemC as
little as possible, by using design patterns which are a
methodology borrowed from software engineering
techniques for software reuse [8]. We will then submit the
changes we made to SystemC to the OSCI, hoping that
they will incorporate them in an their future releases.

12. References

[1] J. Gerlach and W. Rosenstiel, "System Level Design

Using the SystemC Modeling Platform", Worshop on
System Design Automation SDA 2000, pp. 185-189.

[2] S. B. Lippman and J. Lajoie, C++ Primer, 3/e: Addison
Wesley, 1998.

[3] Open SystemC Initiative (OSCI), SystemC version 1.1
beta documentation: http://www.systemc.org, 2000.

[4] Silicon Graphics Computer Systems, Standard Template
Library Programmer’s Guide:
http://www.sgi.com/Technology/STL, 1999.

[5] Trolltech AS, Qt On-Line Reference Documentation:
http://doc.trolltech.com, 2000.

[6] Publications by Bjarne Stroustrup:
http://www.research.att.com/~bs/papers.html, 2000.

[7] Electronic News Online , “OSCI changes terms of
SystemC license”, march 1 2000,
http://www.electronicnews.com/news/2637-
61NewsDetail.asp

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison Wesley, 1994

[9] Sanjaya Kumar, James H. Aylor, Barry W. Johnson,Wm.
A. Wulf, The Codesign of Embedded Systems A unified
hardware/software representation, Kluwer Academic
Publishers, 1996, 274 pages

[10] L. Charest, M. Reid, E.M. Aboulhamid and G. Bois, “A
Methodology for Interfacing Open Source SystemC with a
Third Party Software”, DATE2001, 5 pages, Munich,
2001

[11] J. Hennessy, D. Patterson, Computer Architecture A
Quantitative Approach, 2/e, Morgan Kaufmann, 1996

 Appendix A

// bold and italic indicate changes

#include <systemc.h>
#include "visualSC.h"
#include "test.h"

int sc_main(int ac, char *av[])
{
 //pointer to application object
 QApplication *application;

//pointer to visualSC’s main window

 MainWindow *mainWindow;

 //Creation of a single signal
 sc_signal<bool> output("output");

 //Creation a clock object
 sc_clock clk("clk", 50, 0.5, 0,true);

 //instance of ’test’ module
 Test test("test");

 //Named port binding
 test.clk(clk);
 test.output(output);

//SystemC model without printf or cout

 //call to create visualSC’s mainwindow
MainWindow::CreateMainWindow(&application,
&mainWindow, ac, av);

 //put this sc_start() in comment
 //sc_start(-1);

 /*Here visualSC takes control. Note the
simulation does not start immediately,
only when the user clicks start */

 bool success = application->exec();

 return success;
}

A typical model using the GUI capability

 Appendix B

Clk

 ID_EX_op MEM_WB_IR
 IF_ID_op EX_MEM_IR

 ID_EX_IR MEM_WB_NPC
 IF_ID_IR EX_MEM_B
 ID_EX_A
 PC EX_MEM_NPC reg
 ID_EX_B
 IF_ID_NPC
 ID_EX_Imm

 Forwarding registers MEM_WB_LMD

 / MEM_WB_ALUOutput
 ID_EX_cond
 EX_MEM_ALUOutput
 ID_EX_NPC
 sig_trap
 RAM

Figure 5 : DLX implementation

The DLX implementation consists of five modules

that form individual stages of a pipeline. These are :
• IF : Instruction Fetch
• ID : Instruction Decode
• EX : Execution stage
• MEM : Memory access stage
• WB : Write Back

Each module contains a corresponding process.
Communication between modules are made via ports
which are showed in Figure 5.

The processes are executed concurrently. Ports
looping to an earlier stage represent data forwarding to
decrease data hazards.

Structural hazards are managed by automatic
insertion of a stall (nop instruction).

The instruction set we implemented consists of 54
instructions : the integer arithmetic, logical, shift, set-on-
comparison, jump and branch, load and store and some
special instructions : nop and trap.

The program to be executed on the DLX is in a file
whose name is passed via parameter to the main
function.

The IF module then uses the content of that file to
initialize the instruction memory. The RAM is part of
the MEM module.

Models of the DLX in SystemC and VHDL can be
obtained from www.iro.umontreal.ca/labs/lasso/DLX.

IF
ID EX

MEM WB

Appendix C

Based on Figure 5 with few adjustments, we have

implemented the DLX in SystemC and VHDL.
A comparison of the MEM stage in VHDL and

SystemC show a similar semantic. Most differences are
due to the fact that these implementations were
developed independently.

The VHDL model includes one entity and one
behavioural architecture that contains five processes that
form the stages of the pipeline. Therefore, contrary to
SystemC, no ports are needed to communicate between
the processes.

The VHDL implementation had an additional
constraint : the process was to read the signals values on
the negative edge whereas the on the positive edge,
output signals were updated. This constraint could not
be respected in the SystemC model.

We see from this comparison that VHDL is a strongly
typed language, accessing the RAM requires two type
conversions to obtain the array subscript.

entity dlx is
end dlx;

library ieee; use ieee.numeric_bit.all;
use work. dlx_types.all;
use work.dlx_instr.all;

architecture behavior of dlx is

.

.

.

DLX_MEM:process(Clk)
 variable IR : dlx_bv_word;
 variable ALUOutput : dlx_bv_word;
 variable LMD : dlx_bv_word;
 variable B : dlx_bv_word;

begin
 if Clk = ’0’ then
 IR := EX_MEM_IR;
 ALUOutput := EX_MEM_ALUOutput;
 B:= EX_MEM_B;

 if IR(0 to 5) = op_lw then
LMD:=RAM(to_integer(unsigned(ALUOutput)/4));
 else
 if IR(0 to 5) = op_sw then
 RAM(to_integer(unsigned(ALUOutput)/4))<= B;
 end if;
 end if;
 else
 MEM_WB_IR <= EX_MEM_IR;
 MEM_WB_NPC<= EX_MEM_NPC;
 MEM_WB_ALUOutput <= EX_MEM_ALUOutput;
 MEM_WB_LMD <= LMD;
 end if;
end process DLX_MEM;

.

.

.

end behavior;

SC_MODULE(stage_MEM) {
 sc_in<sc_uint<32> > EX_MEM_IR;
 sc_in<sc_uint<32> > EX_MEM_ALUOutput;

…
 vector<sc_uint<32> > ram_data;
 void process_MEM();
// The constructor
 SC_CTOR(stage_MEM){
 SC_METHOD(process_MEM);
 sensitive_neg << clk;

 //Initialisation ram
 char* str = "ram";
 ifstream infile;
 int x;
 infile.open(str);
 if (!infile) {
 for(int i = 0; i < ram_size; i++)
 ram_data.push_back(0);
 }
 else {
 sc_uint<32> data32 = 0;
 while(!infile.eof()) {
 infile >> hex >> x;
 data32 = x;
 ram_data.push_back(data32);
 }
 }//end else
 }//end constructor
 };

#include "systemc.h"
#include "stage_MEM.h"
#include "dlx_instr.h"

void stage_MEM:: process_MEM() {
 sc_uint<32> IR;
 sc_uint<32> ALUOutput;
 sc_uint<32> LMD;
 sc_uint<32> B;
 int op;

 IR = EX_MEM_IR.read();
 ALUOutput = EX_MEM_ALUOutput.read();
 op = EX_MEM_op.read();
 cout.unsetf(ios::hex);
 B = EX_MEM_B.read();

 switch(op){
 case op_lw:
 LMD = ram_data[ALUOutput];
 break;
 case op_sw:
 ram_data[ALUOutput] = B;
 }//end switch

 MEM_WB_IR.write(IR);
 MEM_WB_ALUOutput.write(ALUOutput);
 MEM_WB_op.write(op);
 MEM_WB_LMD.write(LMD);
}//end process_MEM

Figure 6 : MEM stage of DLX pipeline in VHDL Figure 7 : MEM stage of DLX pipeline in SystemC

