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CP 6128 succ Centre-Ville
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Abstract

Modern software has to evolve to meet the needs of stake-
holders; but the nature and scope of this evolution is diffi-
cult to anticipate and manage. In this paper, we examine
techniques which can discover interesting patterns of evo-
lution in large object-oriented systems. To locate patterns,
we use clustering to group together classes which change in
the same manner at the same time. Then, we use dynamic
time warping to find if a group of classes is similar to an-
other when we ignore the exact moment when changes oc-
cur. Groups that exhibit distinctive evolution propertiesare
potential candidates for new evolution patterns. Finally,the
pertinence and usefulness of the candidates is determined
by perusal of the release notes and the architecture.

In a study of two industrial open-source libraries, we
discovered four new types of change patterns. These new
patterns are useful in that they can be associated with well-
defined maintenance activities such as restructurings and
bug-fixes.

1. Introduction

It is now generally accepted that the effort of maintaining
and evolving software surpasses the cost of creating new ap-
plications [2, 14]. Because software must constantly evolve
to meet the needs of stakeholders, understanding the nature
and distribution of change is important to the management
of ongoing maintenance.

When the high cost of evolution was first recognised
over thirty years ago [1], little was known about how soft-
ware changes. Much has improved since then and lately
research has focused on the identification and detection of
change patterns, archetypal trends in the way software com-
ponents evolve [25, 3]. The majority of the work in this area
has focussed on discovering and exploitingco-change[30]
and on reconstructing fine-grained changes in software sys-
tems [7, 8, 16]. Co-change occurs when different parts of

a system are changed at the same time. This work pro-
vides an answer to the question: “If this changes, what else
changes?”, useful information for maintainers changing an
existing code base. Change reconstruction consist of com-
paring two versions of a program and identifying what types
of changes occured, often refactorings. Other significant
change patterns of interest can be described by observing
how classes change over the evolution of a system. Such
patterns include classes that grow very quickly and idle (or
dead) classes. Rules to detect these classes have been de-
fined and applied [25].

Other as yet unidentified patterns could be useful if they
could be identified and found to be related to maintenance
activities. To this end, we decided to use clustering on
change histories of classes in large deployed systems. Clus-
tering groups classes with a similar change history, and
each group implicitly represents a potential change pattern.
This technique is however sensitive to noise in input and
fortuitous coincidences. Consequently, many discovered
groups are not useful, but the effort in verifying the qual-
ity of the grouping is relatively small compared to the cost
at analysing change in separate classes.

Many researchers have based their work on detailed in-
formation available only within a development environ-
ment, such as error logs and transactions from systems like
CVS. However, outside stakeholders generally do not have
access to this information. Outsiders include users who
subcontract the development and maintenance of systems,
managers who may want to evaluate - independently - the
quality of development, and newcomers who must acquire
knowledge of a system before they can extend it. We work
from the perspective of such outsiders. Since documenta-
tion may be missing or incorrect, in this situation, the only
reliable source of information is the different versions ofthe
systems. Our objective is to provide a flexible technique to
extract change patterns from software releases and verify
how this can be used to guide software maintenance efforts.

We test our approach on the evolution of two open-
source libraries which have the same characteristics as com-



mercial software: they are relatively large, they are used
in many commercial products, and have both evolved for
more than five years. Potential patterns are extracted by the
clustering and are analysed both internally, looking at the
classes contained, and externally using release notes. Fi-
nally, we use dynamic time-warping to compare the differ-
ent groups. This technique detects cases when a pattern re-
peats itself at a different moment in time. In this study, we
managed to identify four distinct change patterns and we
could use this information to improve our understanding of
the evolution of both systems.

The remainder of this paper is organized as follows.
The following section presents previous work on change
patterns. Then, Section 3 describes the different types of
change that we use and how we extract them from the suc-
cessive versions of a system. The identification technique
of groups of classes having similar evolution is presented in
Section 4. Section 5 describes and analyse groups of classes
found in a exploratory study of two systems. Section 6 dis-
cusses our results and their applicability to help understand
a code base. Finally, concluding remarks are given in Sec-
tion 7.

2 Related Work

In recent years, much research has focussed on under-
standing evolution and change in software. Two important
aspects are the definition of change patterns and their detec-
tion or recovery in existing systems. In this section, we will
provide an overview of related work.

Arguably the first catalog of change comes from the
study on refactorings [9]. Refactoring is a particular type
of change which restructures a system without affecting its
external behaviour. Detection of these refactorings has been
done using change in software metrics [6], multicriteria
matching[12, 17], and by using and structural differences in
design [27]. A comprehensive list of available techniques is
published in [15].

Apart from refactoring, co-change patterns are a well-
researched problem which seeks to identify entities that
change at the same time [30]. Often this is done by scanning
version control systems for files that are checked-in either
in the same transaction or within a small time window. This
information can then be used by developers to identify hid-
den links between files. This was done using association
rule mining [28, 30] and dynamic time-warping [3]. Others
have used this information to help understand a code base.

Gı̂rba et al. [11] propose the use the co-change of met-
rics to define patterns. In OO systems, method, class and
package level metrics are used. For example, they define
“parallel complexity” as a pattern affecting a set of methods
that change in complexity at the same time. Some patterns
like shotgun surgery are sign of bad quality. To locate these

patterns, they use formal concept analysis.
Other change patterns are defined by Lanza et

Ducasse [19] who propose the use of an evolution matrix
to identify changes in metrics representative of distinctive
change patterns. More recently, Xing et al. in [25] and [26]
propose a design differentiation algorithm to do the same.
In the first paper, they present simple characterisations like
“active class”, i.e. a class that changes a lot, and “idle
class”, i.e. a class that changes very little. In the second pa-
per, they use changes in design to classify class evolutions
into groups like “rapidly developing”. They rely on these
classifications to analyse the evolution of an open-source
library. Their work is one of the few that underlines the
problem of origin analysis.

The majority of the approaches above require detailed
auxiliary information in addition to the code versions.
For example, co-change discovery often identifies pairs of
classes changed together, but it generally requires accessto
the version control system, making it a useful tool for de-
velopers, but a poor one from a management perspective.
When a company outsources the maintenance of software
systems, it needs to characterise the general change patterns
in the system to judge the quality of the maintenance. Fur-
thermore, in this case, the detailed input required is not gen-
erally available.

We differ from previous work by using clustering on
change history and seeking to mine change patterns affect-
ing significant groups of classes without a priori definitions.
Every system is unique, both in terms of the skills and the
experience of its developers, and in terms of its environment
(e.g. technological). It is therefore reasonable to assumeit
contain some particular evolution patterns which cannot be
known beforehand. It is for is this reason why we propose
the use of clustering algorithms to identify groups of classes
changing is similar ways.

3. Modelling Change

The history of classes in a system is modelled as a se-
quence of versions as defined in [10]. Every version of a
class is associated with its equivalent in the next version.
The difference (change) between every successive version
of a class is measured and is combined into anevolution
blueprint which represents the complete change history of
the class.

Generally, a class existing at versioni is associated with
the class in versioni + 1 that has the same name and the
same package. However, when there is a name change or
a move (package change), building coherent histories is not
obvious. This problem is called origin analysis [24]. We
align classes using information retrieval techniques as de-
scribed in Section 3.1.

For every class evolution, its level of change is calculated



using two measures of change: relative implementation
change, IC (Section 3.2) and relative functional changes,
FC (Section 3.3). All changes to a class are included in a
vector that defines its evolution blueprint. For a system with
n versions, a class containsn − 1 implementation changes
andn − 1 functional changes as follows:

Blueprint = (IC1−>2, ..., ICn−1−>n, FC1−2, ..., FCn−1−>n).
Blueprints are then used both to characterise a change

profile of individual classes as well as the changes in pat-
terns.

3.1. Origin Analysis

Origin analysis is the process of deciding if, between two
different versions of a system, a new program entity is really
new, or if it a renamed, moved or somewhat changed version
of an entity in the previous version [24, 12]. A comparison
of different techniques is presented in [15].

Details of our technique, while interesting, are beyond
the scope of the present paper as they are not central to
the thrust of the present paper. Suffice it to say that we
used a computer-assisted approach similar to that of God-
frey et al. [12], combined with information retrieval tech-
niques to locate candidates most closely matching missing
classes. Details of the technique and a comparison with ex-
isting work will be reported elsewhere.

3.2. Implementation change

Implementation change is defined as the change in the
code between two consecutive versions of a class. First of
all, methods in consecutive versions of a class are aligned
by signature. Then, a Levenshtein edit distance [20] mea-
sures the differences by counting the number of added,
removed and modified instructions between every pair of
method, as shown in Equation 1).

dist(mi, mi+1) = instr. added+ instr. removed+ instr. chg (1)

Total change in a class is measured as the sum of the
changes in its methods (Equation 2). When a method is ab-
sent in either version, it is treated like a method containing
no instructions. Relative change is calculated by normalis-
ing absolute change by the maximum size of class.

IC(Ci, Ci+1) =

∑
(mi,mi+1)∈(Ci,Ci+1)

dist(mi,mi+1)

MAX(Size(Ci), Size(Ci+1))
(2)

The classic algorithm for the Levensthein edit dis-
tance was implemented within the PTIDEJ reengineering
toolkit [13]. Since the toolkit works primarily on byte-code,

this metric calculates change in byte-code. This would al-
low the metric to be used even without having access to the
source code of releases.

3.3. Functional change

There exist many ways to quantify functional change. In
object-oriented systems, we can think of using added meth-
ods or classes. From the perspective of an external user,
functional change is often viewed as a change to the API
since the public interface of a class defines the functionality
it offers to other classes. It is for this reason that we use the
relative change in the public interface of a class as a mea-
sure of functional change (FC). It is defined as the number
of added or removed public methods divided by the maxi-
mum size of the public interface, as shown in Equation 3. In
this equation,I(Ci) is the set of local and inherited methods
in the public interface of a classC at versioni and\ is the
setdifferenceoperator.

FC(Ci, Ci+1) =
|(I(Ci) ∪ I(Ci+1)) \ (I(Ci) ∩ I(Ci+1))|

MAX(|I(Ci)|, |I(Ci+1)|)
(3)

4. Locating Patterns

To find potential patterns, we use clustering, an auto-
matic learning technique, to extract groups of similarly
evolving classes to identify patterns. The classes they con-
tain are analysed according to their size, their maturity and
their rate of change to verify if they are a pattern of inter-
est. Finally, these groups are compared with one another
in a time independent manner using dynamic time-warping.
This section presents the clustering technique and the time-
comparison algorithm.

4.1. Clustering Changes

Clustering is an unsupervised learning technique which
means that it relies solely on the attribute distribution to
groups things. This is often used when there are either
no well defined groupings or when groupings are highly
volatile like buying trends on shopping sites. In software
engineering, it has been employed for example to identify
fault-prone modules [29] and more recently to reorganise
the code [21]. To locate change patterns, we apply cluster-
ing to the change blueprints of classes.

We propose the use of XMeans (eXtended kMeans) clus-
tering [22] to identify change patterns. This algorithm dis-
tributes the input items intok distinct clusters and returns
the centroid of each cluster. In our case, our blueprints (see



Figure 1. Clustering example

Section 3) are used as input, so the algorithm returns a dis-
tinct centroid corresponding to the change blueprint for ev-
ery cluster. Classes are finally grouped together according
to their Euclidean distance to the nearest cluster center.

Figure 1 illustrates1 the clustering process. In this ex-
ample, the points are class blueprints containing one evo-
lution, (IC, FC), while the squares are the cluster centers.
The clustering algorithm finds cluster centers (using data
means), then it verifies their distribution and iterativelyre-
calculates new centers. The iterative process is shown by
the squares becoming increasingly light.

There are two advantages with using this technique.
First, it can deal with missing change values (for the version
when a class doesn’t exist). Any missing value is simply not
considered in distance calculations. This is very important
since classes appear and disappear regularly. Secondly, un-
like KMeans, it is able to evaluate the number of clusters
needed, removing the need to providek as an input param-
eter.

4.2. Time-independent Cluster Analysis

The XMeans algorithm does not treat change blueprints
as time series; rather it considers each entry in the blueprint
vector to be an independent attribute. Therefore, it cannot
find similar patterns of change that recur at different times
for different classes. To recognize these, we propose to use
dynamic time-warping (DTW) [18] to compare the different
clusters uncovered by XMeans.

Dynamic time-warping is a technique used to measure
shape similarity between a pair of sequences. This tech-
nique was recently used by Bouktif et al. [3] to find classes
changing more or less at the same moment. When com-
paring sequences, DTW is allowed to stretch (warp) the se-
quences to achieve optimal matching. This technique can-
not be applied directly to class blueprints since they of-
ten contain missing versions. We can however apply it
to the cluster centers which provide a complete evolution
blueprint.

Figure 2 illustrate an example of an alignment between
two sequencess = (0, 0, 0, 1, 4, 0) andt = (1, 2, 4, 0, 0, 0).

1Figure created using applet http://home.dei.polimi.it/matteucc/Clustering

Figure 2. DTW example

In this example, the beginning of thet is lengthened to
match with the subsequence(0, 0, 0, 1) of s. Then, the final
0 in s is lined up with the trailing0s in t. The total distance
between the sequences is of4.

5. Exploratory Study

This section describes how the proposed technique can
be applied to the study of two industrial systems.

5.1. Objective

The objective of this exploratory study is to validate
the usefulness of the proposed technique to understand an
evolving code base. Specifically, we are interested in dis-
covering what types of patterns emerge from industrial sys-
tems and what kind of information they can provide to help
manage their evolution.

5.2. Systems Studied

Two open-source systems were picked for this study:
Xerces2 and JFreeChart3. They were selected because of
their popularity, maturity and difference in styles of devel-
opment. Both are bundled in a multitude of commercial
products meaning that this analysis should be representative
of the study of real commercial systems.

Xerces is a XML parser that follows multiple specifi-
cations defined by the w3c4. Changes to these standards
are a major cause of change in the system. Its develop-
ment process is relatively rigorous: the developers use a bug
reporting system, and collaborate using a dedicated devel-
oper mailing list. Most developers are paid by companies to
work on the project. In particular, this library is used in the
Java Runtime Environment provided by Sun and in IBM’s
Web Application Server, Websphere.

The other system is JFreeChart, a popular chart build-
ing framework. It is developed incrementally following a

2http://xerces.apache.org/xerces-j/
3http://www.jfree.org/jfreechart/
4http://www.w3.org/



System Versions First Version Last Version Initial size Final size Class blueprints

Xerces 36 1.0.1 (12/31/1999) 2.9.0 (11/22/2006) 210 classes 518 classes 690 blueprints
JFreeChart 36 0.5.6 (12/01/2000) 1.0.6 (06/19/2007) 48 classes 790 classes 1469 blueprints

Table 1. Descriptive data

“Release early, release often” approach [23]. By provid-
ing new functionality quickly, users are more likely to pro-
vide insightful feedback and help with debugging. This is
worthwhile when there are few developers and a large user
base. The project has its own discussion forum as well as
some bug-reporting facilities provided by Sourceforge5, the
project host. It is reported that the library is used by over
40,000 developers and the primary developer works as a
consultant for users of this library.

Available released versions were downloaded from both
websites. The developers use a three number system like
M.m.b. M is a major version number,m is the minor ver-
sion number andb is the micro release number, or a bug-fix
version. How developers use this scheme is more often than
not subjective. Generally speaking, a new major version of
a library means that it has changed significantly and will not
likely be compatible with the previous version. A new mi-
nor version improves what exists, but shouldn’t break back-
wards compatibility. Finally a bug-fix version should only
correct bugs and should be a drop-in replacement. More-
over, JFreeChart followed a numbering strategy popular in
open-source development. Before the developers decide on
a stable design, they use a major version of 0. Hence the
first version available to us was 0.5.6.

The growth of the systems is presented in Table 1. Over
the course of the last seven years and 35 version changes,
Xerces has more than doubled in size while JFreeChart has
grown from 48 to 800 classes. In this period, many classes
have been removed, added and refactored. In total, we have
gathered 690 and 1469 class evolutions histories respec-
tively for Xerces and JFreeChart.

5.3. Cluster Description

The XMeans clustering algorithm found a total of 11
clusters in Xerces and 12 in JFreeChart. The descriptions
of the clusters are presented in Tables 2 and 3. For every
cluster, the tables show the number of classes it contains,
the probability of a change in these classes and the average
number of versions they exist. The number of classes in-
dicates the size of the cluster, an indication of its relative
importance to the total change in the system. The prob-
ability of change is the total number of versions where a
change (either functional or implementation) has occurred
in its classes divided by the total number of versions where

5http://www.sf.net

Cluster # of classes Change rate Versions

X1 9 (1%) 22% 17
X2 14 (2%) 35% 19
X3 23 (3%) 27% 17
X4 28 (4%) 37% *36
X5 96 (14%) 25% *35
X6 35 (5%) *48% 18
X7 *377 (55%) 22% 13
X8 13 (2%) *48% 16
X9 55 (8%) 23% 27
X10 10 (1%) 38% *34
X11 30 (4%) 23% 24

All 690 (100%) 26% 19

Table 2. Xerces Clusters

Cluster # of classes Rate of change Versions

J1 18 (1%) *68% 20
J2 15 (1%) *67% 20
J3 3 (0.2%) 17% 7
J4 12 (1%) 38% 9
J5 7 (0.4%) 23% 10
J6 26 (2%) 34% 9
J7 18 (1%) *71% 20
J8 128 (9%) *48% 12
J9 *843 (57%) 17% 7
J10 *348 (23%) 19% 17
J11 8 (0.5%) 35% 22
J12 43 (3%) 19% 22

All 1469 (100%) 25% 11

Table 3. JFreeChart clusters

classes exist. Finally, the number of versions of a cluster is
a sign of its maturity and this means that it provides changes
in many versions to learn the clusters, making it more co-
hesive. A cluster with short-lived classes might be more
sensitive to random co-occurrences.

Information concerning the general change in the sys-
tems is also provided in the table. Both systems have a sim-
ilar change rate of about 25%. JFreeChart has more short-
lived classes due to the fact it grew by a factor of 10 and
most classes were not present in the first versions.

5.4. Cluster Analysis

Our analysis of the clusters will focus on clusters that are
significantly different from the others. First, two clusters
are much larger than the others and contain the majority of



Figure 3. Large clusters

classes in their respective systems. Then, we look at the
clusters containing frequently changing classes. Finally, we
look at the long-lived clusters that are composed ofmature
classes. For each group, we analyse pairs of similar clusters
using DTW.

The analysis is accompanied by figures giving the av-
erage rates of change of classes contained in the clusters.
These rates of change have been discretisized to an inte-
ger value[0, 4] to minimise visual clutter. To discretisize
change, we applied clustering to the values of all different
change rates (IC and FC separately), forcing it to create 5
different groups. A value of zero holds an average change
of [0, 0.01]% while a value of 4 indicates a change rate of
over 15%.

Large Clusters. In both systems, there are very large
clusters that contain most of the existing classes. Typi-
cal are the clusters X7 (Xerces) and J9 (from JFreeChart)
whose change histories are shown in Figure 3. More often
than not, these classes are grouped together because they
do not change much. There are however some spikes of
medium level activity. In particular, we can see two such
spikes in JFreeChart and one in Xerces. In J9, the first spike
corresponds to a massive renaming of the system packages
which caused changes in most classes and the second coin-
cides with the release of the first stable version of the library
(version 1.0.0). The changes in Xerces occurred at version
(2.3.0), which ended the implementation of new specifica-
tions. These seem to be system-wide punctual changes af-
fecting most classes regardless of their role or functionality.

The identification of these important maintenance ver-
sions is not as obvious as it may seem. For example, av-
erage change rate for the system could not have provided
a maintainer this information because often intense local
changes result in higher overall change rates. Instead, iden-
tifying lower levels of change spread throughout the system
are useful.

Furthermore, when evaluating the modifications in a new
version of a system, maintainers start off by considering the
numbering scheme. In both systems, some major changes

occurred, yet in 2 out of the three clusters, these changes
did not occur in major releases.

Frequently changed clusters Other clusters that stand
out are those that change significantly more than the others.
A few reasons might explain why some classes are modi-
fied regularly. Sometimes the code is badly structured and
needs to be refactored, and sometimes the developers set up
the system so that these classes are extension points for all
future enhancements. In either case, these classes warrant
inspection.

In our case, the active clusters are X6, X8, J1, J2 and, J7.
With X8, whose change blueprint is shown in Figure 4(a),
we can see that there is a high level of change throughout the
first half of the life of the system; then none for the second
half. Examination of the cluster shows that it contains all
the classes from a particular package. The available docu-
mentation indicates that this package was a constant source
of problems and if there is no change in the second half, it
is because the developers removed the package, presumably
due to the high maintenance cost.

In JFreeChart, J7 is the most active cluster. Its change
blueprint is presented in Figure 4(b). All of the classes are
changed in the first versions and a few were removed. Study
of the code and documentation shows that some classes
are designed to be extension points. For example, we find
two classes called JFreeChart and ChartFactory. These are
used by users of the library to create charts. Whenever a
new chart type is implemented in the library, a new method
is added. A co-changing test class JFreeChartTest is also
present in the cluster. The characteristics of clusters J1,J2
and X6 are discussed later in this section.

Maturity Analysis. When many versions of classes are
available, the groupings returned by the clustering should
be more significant. We have a few clusters noticeably more
mature than the others like X4, X5 in Xerces. These classes
define the document object model (DOM) for XML, WML
and HTML documents and follow a series of specifications
by the W3C. That stability explains the longevity of the
classes in the cluster.

Matching clusters. In the next phase, we look for more
subtle change patterns by using dynamic time warping to
see which of these clusters evolve in similar ways at siome
point in their life; either in terms of implementation or func-
tionality or both.

The first interesting pairings that we found are(J1, J2)
and the(X4,X5). These show similar changes in their in-
terfaces, yet seem to evolve differently in implementation.
They contain important classes in their respective systems.
As such, the developers used inheritance to organise the



(a) Xerces : cluster only exists until version 2.0.0

(b) JFreeChart

Figure 4. Usual suspects

code. These pairs of clusters were found to be similar be-
cause of the nature of our FC metric which measures the
change in the public method of a class. However, inheri-
tance is used differently in both systems and the two pairs
show different ways code can be structured in a co-evolution
pattern.

In JFreechart, functionality is distributed at every level
and the two clusters (J1 and J2) contain two different types
of classes that can render charts. These classes share a com-
mon base class as shown in Figure 5 and consequently inter-
face change is mostly shared. On the other hand, the effort
in maintaining the different types of classes (implementa-
tion change) is different. The difference between J1 and J2
is that they render different types of data. At every level in
the inheritance tree, some functionality is implemented. In
J2, changes regularly drop off after major changes while in
J1, these major changes are followed by small implementa-
tion changes: these are bug-fixes. On a final note, all of the
rendering classes were grouped in these two clusters.

X4 and X5 change like the J1 and J2 pair, but they differ
because they implement different levels of the inheritance
tree (Figure 6). X4 holds the shared superclasses and com-
mon functionality for all documents object models imple-
mentations while X5 contains small classes with no special-
isation code. This is similar to the use of some frameworks
where the base classes contain the vast majority of function-
ality. In this a case, the upper, reusable levels of code ac-
count for 6 levels of inheritance. Our approach grouped to-
gether all appropriate classes that structure XML document
elements, both generic and specific (HTML and WML), but
ignored factory and utility classes which were contained in
the same packages. As with(J1, J2), (X4,X5) shows

Figure 5. Rendering classes in JFreeChart

Figure 6. DOM classes in Xerces

cyclical activity where functional change drops off after a
significant change in the code.

There are similarities between the evolution of X1 and
X8. Both X1 and X8 contain classes responsible for validat-
ing DTDs, but X8 has the classes that were used in the first
version of the system and that were replaced. X1 contains
most of these new classes. The classes that were ignored
either didn’t change (located in cluster X7), or either had a
different role (factory classes). X1 and X8 are presented in
Figure 7 both show a clear stabilisation pattern. When the
classes are added to the system, they change a lot, and then
stabilise.

5.5. Patterns Found

From the results presented in the previous section, we
consider that four different patterns were located:



Figure 7. Two stabilisation clusters - Xerces

• The first is a pattern of frequent and substantial change.
We name classes in this groupusual suspectsbecause
they are likely to come under review whenever change
is considered. Clusters X10 and J7 are typical exam-
ples. This pattern is not necessarily a sign of poor
quality; in JFreeChart, it corresponds to classes that
are meant to change regularly;

• Code stabilisation(X1,X8) occurs when newly intro-
duced code require a few versions before remaining
stable then become idle. This occurred was observed
in both major versions of Xerces;

• Punctual changes(X7,J9) are one-time changes that
affect a large number of unrelated classes. This can
indicate the severity of a version change;

• Common concerns(X4,X5,J1,J2) are long-lived
classes that co-evolve since they all implement the
same concern.

6. Discussion

In this work, we used clustering to group classes accord-
ing to their evolution history. These groups were analysed
to identify interesting change patterns. We now discuss how
this information can be used to manage maintenance efforts
and how this compares with other techniques available.

Are system-level changes detected? Recovering the
knowledge of past system-level changes can help under-
stand how the software evolved in key moments of its ex-
istence. Such changes include modifications of the under-
lying platform (e.g. OS, programming language) and mod-
ifications to the system architecture. These can result in
one-time changes affecting normally unrelated classes.

We found that the largest clusters identified major
system-level changes in both systems, precisely a ma-
jor version change in Xerces and code reorganisation in
JFreeChart. We believe that knowing the effect of a pre-
vious system-level change can help estimate the cost of im-
plementing a similar change in the future. This can also be
used to judge the importance of a new release when release

notes are not available and potentially correct an incorrect
version number.

Can change patterns indicate the focus of developers?
Users are often interested in knowing the reason justifying
a new version of a particular system to decide whether it is
worthwhile to upgrade or not. This is generally detailed in
release notes.

Operating without this information, we found that the
peaks of activity characterising the DOM classes in Xerces
corresponded to changes in the specification which were
the primary reasons for many new versions. Since most
versions of JFreeChart are unstable, pre-version0 releases,
they contain many different types of changes, making it
more difficult to identify the focus of developers from doc-
umentation.

Can the history of a system help identify concerns?
When a new version focuses on improving a specific part
of a system, the clustering algorithm was able to iden-
tify some key concerns such as the rendering classes in
JFreeChart and the document model for Xerces. These con-
cerns were mostly identified due to similar changes in the
interfaces of the classes. These were detected as common
concerns. Other work using evolution to identify concerns
includes [4, 5].

Can the proposed technique deal with a rapidly growing
system? Since the technique proposed does not use a de-
tailed input like a log from a versioning system, it requires
a significant number of versions for co-evolving classes to
correctly identify cluster centers. When cohesive groups
are identified, new, young classes are easily assigned to the
same clusters. This was observed with the rendering classes
of JFreeChart.

In JFreeChart, classes were gradually added to the sys-
tem to provide new chart types, yet the clustering algorithm
joined these new classes with the long-lived classes in the
appropriate clusters. Figure 8, we present the growth of
clusters J1 and J2, clusters containing the rendering classes
described earlier. The clusters contain mostly classes that
didn’t exist at the beginning of the development, yet they
were all correctly grouped together. We have observed that
very few co-changing versions are necessary for new classes
to join existing clusters.

Can this technique be used with any methodology?
Unlike Xerces, JFreeChart uses a “release often, release
early” strategy favoured in agile methodologies. Many im-
portant parts of JFreeChart were regularly modified before
the first major version release. This high-level of activity
causes noise when changes affect large parts of the system.



Figure 8. Growth (# classes) of J1 and J2

This is noticeable by the drop in activity in the detected con-
cerns after the release of the first version.

Can code be organised to minimise the cost of change?
We chose to use clustering in order to identify previ-
ously unknown or system-specific patterns. Some patterns
emerged because different parts of the systems are organ-
ised in such a way as to minimise the cost of maintenance.
This was the case with the common concerns in both sys-
tems since the organisation of their classes reflected the de-
sire of developers to properly factor code. This allowed de-
velopers to evolve the system in a structured and predictable
manner.

Limitations. There are a few limitations to our observa-
tions. First, the detection technique itself has some weak-
nesses since it considers the changes between pairs of ver-
sions as independent. Obviously this is not the case since
we noted that there are cause-effect relationships between
changes. Nevertheless, this did not prevent the clustering
from locating patterns, and by using DTW, we could iden-
tify cases where similar patterns happen at different mo-
ments in time.

Another problem comes from the presence of noisy data
like short-lived classes. Short-lived classes provide little in-
formation to the clustering algorithm when it searches for
potential patterns. These classes could be analysed sepa-
rately, or even ignored. The same can be said about the
types of versions analysed. Some versions like those affect-
ing only one class might be so small that they should be
ignored. In this first exploratory study, we decided to in-
clude all data, but we plan on verifying how to best select
data in future work.

A final point is that the age of a class is relative to the
system version and not to the class version. This means that
the first change metric contained in any evolution blueprint
of a class corresponds to the first versions of the system, not
to the first version of the class. This allows the clustering
technique to locate system-level changes like major version
changes, but it might miss other types of patterns.

7 Conclusion

In this paper, we show how clustering can be used to
identify change patterns in evolving systems. Our approach
relies on the only reliable information available to external
stakeholders: the different versions of source code.

In an exploratory study, this technique was tested on two
mature industrial open-source systems. From the resulting
clusters found, we could identify four change patterns. Here
is a summary of the patterns identified:

• The usual suspects are classes that are frequently
changed by large amounts. We found that it can corre-
spond to key classes providing extension points;

• Code stabilisation occurs when new classes intro-
duced in a system require a few versions before be-
coming stable. This was detected in a minor concern;

• Punctual changes are classes that are grouped to-
gether because of a change in a specific version. When
these groups are large and contain unrelated classes,
they can identify system-level changes;

• Common concern affects groups of classes imple-
menting a same concern. These classes are grouped
together because they co-change heavily.

We also discussed how these patterns could help manage
maintenance efforts. In particular, we found that:

• Important system-level changes were identified in
large clusters, this can be used to judge the importance
of a specific version and possibly correct version num-
bers;

• Classes implementing key concerns were identified if
they were co-evolving for a relatively long-time;

• Software can be organised to manage change. In the
study, we found that inheritance was used by develop-
ers to reuse code and manage the complexity of chang-
ing both systems.

In the near future, we plan on extending this work
by studying additional systems to identify more, different
change patterns. We also plan on trying out new change
metrics which could allow us to uncover new types of pat-
terns or identify our patterns more effectively.

Our ultimate goal is however to see how this evolution
information can be included in an industrial quality model.
To this effect, we are currently working with a quality as-
surance team in a large company which needs tools to judge
the quality of outsourced software systems.
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