
96/3/4

SCOOP
Structured Concurrent Object Oriented Prolog1

Jean Vaucher, Guy Lapalme & Jacques Malenfant
INCOGNITO, Dépt. d'Informatique et R.O., Université de Montréal,

CP 6128, Station "A", Montréal, CANADA H3C 3J7

ABSTRACT

SCOOP is an experimental language implemented in Prolog that tries to
combine the best of logic, object-oriented and concurrent programming in a
structured, natural and efficient manner. SCOOP provides hierarchies of
object classes. These objects behave as independent Prolog programs with
private databases which can execute goals within other objects.

SCOOP also supports parallel processes, synchronised by the exchange of
messages. For simulation, a sequencing set and primitives concerned with
simulated time are provided. Thus, SCOOP has the ability to describe
structured dynamic systems and to encode knowledge.

The important features of SCOOP are 1) its lexical block structure designed
to promote and enforce modularity and to allow verification and
optimisation via a compiler, 2) its combination of familiar programming
cliches: the concepts of Simula67 for macro-structuring of entities and those
of standard Prolog (unification & backtracking) for local behaviour, 3) its
provision for parallel activity with a clear distinction between static objects
and dynamic processes and 4) its discrete simulation capability.

1 This paper was presented at ECOOP'88 in Oslo.

2

1. INTRODUCTION

Prolog is a relatively new programming language based on the notation of formal logic and

the concepts of theorem proving[Cloc81, Colm83, Ster86]. It stresses a declarative style of

programming where a program is written as a set of facts and rules pertinent to the

problem at hand and execution is viewed as attempts to prove the validity of queries.

Prolog has shown itself to be excellent for symbolic computation and has found many

applications in areas such as natural language processing and expert systems.

Prolog is a deceptively simple language whose power derives from the systematic

exploitation of two fundamental concepts: unification and backtracking. Unification is a

pattern matching operation which is used to select applicable rules and facts and to effect

parameter transmission. Backtracking means that, in trying to answer a query, the inference

mechanism tries all possible combinations of facts and rules. In other words, Prolog

automatically builds programs from available procedures at run-time. As a result, it is not

uncommon to find that a dozen well-conceived lines of Prolog are equivalent to several

pages of code in more traditional languages.

The logical elegance of Prolog and the compactness of its code makes it tempting to use for

large-scale general-purpose programming. However, Prolog was not conceived with

software engineering aspects in mind and there are no standard features to support

hierarchical decomposition and modularity. Prolog is also weaker than traditional

imperative languages in other aspects. The most glaring deficiencies lie in the following

areas:

• modularity and protection,
• state changes (there is no assignment in Prolog) and
• expression of parallel activity.

These are exactly the areas where object-oriented (OO) concepts are most effective. Using

the object methodology, systems are conceived in terms of classes of interacting

objects of various types each with its own attributes, state and capabilities [Stef85]. Local

procedures and state variables are usually hidden or protected so that each class may be

designed and understood in isolation then assembled according to behaviour without

concern for internal details. Moreover, OO languages, such as Simula [Dahl70, Dahl72],

can be designed to exhibit static block-structure, so that many aspects of program

behaviour can be deduced from the text. This helps in understanding, debugging and

compiling.

3

Often, a class may be delared to be a specialisation or subclass of another, thereby

inheriting all the attributes of the superclass. The inheritance mechanism facilitates

incremental development and allows the creation of generic software packages whose

object classes can be extended and customised. In some languages, multiple inheritance

from several superclasses is allowed forming inheritance networks rather than hierarchies.

Object-oriented programming is also a good descriptive base for parallel computing

[Yone87]. The notion of self-contained independent object is very close to that of parallel

process or actor. Furthermore, the concept of communication by message passing

between objects and local interpretation of messages maps well onto distributed

environments.

In view of the complementary strengths of the logic and object-oriented paradigms, an

integration would appear to be fruitful. Scoop tries to do just that: it combines what we

think is the best of logic, concurrent and object-oriented programming in a natural and

efficient manner. The Scoop system is implemented in Prolog but the use of a compiler and

a meta-interpreter gives us great freedom to experiment in the design of the syntax and

semantics of the language.

In Scoop, classes represent independent Prolog programs can operate with the full power

of unification and backtracking. Inheritance between classes is also provided. Each object

has its own private database: initially an exact copy of the clauses defined in its class.

Some clauses are immutable and fixed for all objects; but others, like dynamic predicates in

Prolog, can be asserted and retracted by the object. The fixed (static) clauses act as

methods whereas the dynamic ones act as state variables. It is also possible to

parametrise objects by inserting some dynamic clauses into the local database of the object

at creation time.

An object can invoke goals within other objects. Initially, only one object, the main

process object, is active. This object can create other objects and send them queries. To

allow multiple activities to proceed in parallel, Scoop supports processes, synchronised by

the exchange of messages. On a sequential machine, processes are implemented by time-

sharing.

4

Much of our experience with object-oriented programming had been acquired through

simulation with Simula, an OO language which could be extended to serve as a discrete-

simulation language. As a test of the suitability of Scoop for general-purpose

programming, we extended it for simulation in the same way with a sequencing set and

scheduling primitives.

In the next section, we shall review related language proposals which combine some

aspects of the object-oriented, concurrent and logic programming paradigms. Each is

different either in its objective, its features or its base-language. Put together, the proposals

cover just about all parts of Scoop. It is therefore important to underline the particular

approach embodied in our proposal:

1) We take Prolog as the base language and seek to extend it in the most useful way.
We do not attempt to compare Scoop to designs which go the other way and graft
logic (or object, actor...) features to other base languages [Robi82, Lalo87,
Yone87]

2) We believe that Scoop manages to integrate usefully more concepts than any other
Prolog-based proposal.

3) Our perpective is that of software-engineering: we are interested in structuring
Prolog so that large programs may be written, understood and assembled in
modular fashion. Thus, our proposal will stress static inheritance structure to fix
the meaning of names and we will not allow the user to define more flexible
inheritance schemes or meta-interpreters. Similarly, we shall aim for macro-
parallelism suitable for operating system processes rather than trying to exploit
massively-parallel architectures

The salient features of the Scoop object/logic integration are the following:

• block structured syntax: designed to promote and enforce modularity and to allow

verification and optimisation via a compiler.

• familiar programming cliches: using the concepts of Simula67 for macro-structure

and those of standard Prolog for local object behaviour. Hopefully, Scoop

programs should appear familiar to both object and logic programmers.

• parallelism: with a clear distinction between static entites (objects) and dynamic

computing agents (processes)

• discrete simulation capability.

5

Scoop is not a finished language; it is an evolving experimental vehicle meant to show the

feasability and desirability of the combined approach as well serve as a test-bed for new

ideas. Some aspect of the language as therefore quite arbitrary and subject to evolution.

The remainder of the paper is structured as follows. First, we survey consider related

language-integration proposals. Next, we describe object definition in Scoop along with

remote calls and qualification of object references. After that, we consider, concurrent

programming and message passing. Then, the simulation features of Scoop are described.

Programming examples follow and the implementation is briefly discussed.

2. RELATED WORK

Object-logic proposals can be divided into two categories depending on wether or not they

consider parallelism. In the first object-oriented language, Simula67, objects were

introduced to simulate parallel dynamic entities and Simula objects operated as coroutines.

Currently, over 20 years later, it is surprising that many object-oriented language proposals

concentrate on modularity and neither support real or quasi-parallelism. We consider first

the proposals which integrate logic and objects without considering parallelism, then those

for concurrent programming.

Object-oriented logic programming

Some of the benefits of object-oriented programming, namely class-dependent methods and

inheritance, can be achieved with minimal implementation by using a particular coding

discipline for the methods and a SEND predicate which searches an explicit ISA hierarchy .

This is the approach taken by Kahn (1981), Zaniolo (1984) and Stabler (1986). However,

users must be aware of the internal representation of objects and the notation is verbose.

Further study of the proposals reveals that there is no provision for changing object state

and no consideration of concurrency.

Objlog [Chou87] and LOOKS [Mizo84] implement objects as part of more complex

knowledge representation languages and concentrate on flexible inference schemes.

LOOKS realizes a blend of objects and logic programming with class/meta-class/instances

having methods defined as Horn clauses. Meta-classes here deal with control knowledge

6

associated with a class, allowing the user to define the inference procedure to be used.

Objlog is specifically oriented toward complex knowledge representation problems as

architectural databases. Neither system considers parallelism and there is no structured

syntax.

ESP is an extension of KL0, a Prolog like machine language developed at ICOT [Chik84].

An object in ESP is an axiom set which responds to messages by trying to refute the

submitted proposition using its axiom set. Inheritance through class hierarchy is provided

and "slots", representing time dependent state variables, may be associated with each

object. In Scoop, we follow standard Prolog and keep state information as dynamic

clauses.

SPOOL [Fuku86] is a proposal which syntactically ressembles our own. SPOOL is built

on top of IBM Prolog. It a uses block-structured syntax for class declaration and supports

inheritance hierarchies. Full backtracking is allowed. Objects communicate via a "send"

primitive which retains the full unification capability of Prolog to allow such things as

anonymous recipients. SPOOL has no parallelism and, like ESP, it uses instance variables

to implement state.

Proposals with parallelism

Parallelism in logic programming is also receiving considerable attention. Two families of

approaches may be identified. First, much work has been focussed on the AND/OR model

of parallelism, exemplified by Parlog [Clar86], Concurrent Prolog [Shap83, Shap86] and

others [Kahn86] . These languages are designed for fast execution on massively-parallel

architectures and concurrency occurs at a micro-level of the individual term. The ability to

backtrack has been seriously limited in order promote speed. The notion of object with

changing state is implemented in a side-effect free manner as perpetually recursive

procedures. Although logically sound, this approach is unorthodox from the point of view

of traditional programming. Object-oriented inheritance can be implemented in these

languages, but there is no syntax to support the methodology and the notation remains

opaque [Shap83, Kahn86]. At the present, these must be considered to be machine-

oriented object-logic languages.

The second family is best described by the generic title: communicating sequential Prolog

processes. Delta-Prolog [Pere84] illustrates this type of approach. It is based on

7

Monteiro's distributed logic and uses communication primitives similar to those of

Communicating Sequential Processes. Scoop may be described as an object-oriented

extension of the principles of this second family. Communicating Prolog Units [Mell86,

Mell87] also are object-oriented extension of the Delta-Prolog family. However, they

differ from Scoop by giving to the user more flexibility in the definition of relationship

between objects (as in Actors). Scoop prefers static inheritance scheme to ease program

comprehension and coding for most situation. Another example of parallel object-oriented

logic language is Object-Prolog [Doma86]. In Object-Prolog, a program is divised into

worlds defined as "modularised unit of knowledge" (Horn clauses). Arbitrary inheritance

patterns may be coded into worlds again at the price of more programming efforts and run-

time inefficiency.

Finally, one should mention T-Prolog [Futo86] which allows discrete simulation in Prolog.

However, there is no attempt to provide object structure.

3. SCOOP CLASSES AND OBJECTS

Scoop modularizes Prolog programs by grouping related predicates in class definitions. A

class is a template for the creation of objects of the same type. All objects of a particular

class will have a common set of predicates particular to them. These predicates are

separated in two sets. The first set contains static predicates which are fixed and common

to all objects of the same class. These predicates can be viewed as methods. The second

set contains dynamic predicates which may have initial clauses common to all objects of the

same class but can also have new clauses passed as parameter at object creation and/or

asserted or retracted during program execution. Dynamic predicate clauses function as

individual databases private to each object that can model changes of state. To improve

SCOOP's performance, dynamic predicate clauses are limited to facts whereas static

predicate clauses can be either facts or rules. This has not been found to limit expressive

power.

8

Class definition syntax

In Scoop, a class is a set of dynamic and static predicate definitions which can inherit

definitions from other classes. The syntax of a class is shown below along with a typical

example:

class <name>
(<dynamic predicates dcl>).

is_a <super_class name> .
dynamic.

<dynamic facts>

static.
<static predicate clauses>

begin
< body >

end.

a) Syntax of Class

class person (name/1, child/2,
sex/1, +needs/1).

dynamic.
name (unknown).
sex (male).
needs (love) .

static.
son (S) :- child (S, male).
daughter (D) :- child (D,female).

end.

b) Typical class definition

Figure 1 - Class Declaration

The class name is simply an atom which identifies the class. The is_a clause indicates

inheritance relationships between classes in the program. In the example, person has no

super_class.

Dynamic predicates function as parameters and state variables. They are declared in the

dynamic declaration part following the class name. Here, the programmer must give the

mode, name and arity (number of arguments) of each dynamic predicates. In the example,

four dynamic predicates are declared: name, child, sex, and needs. Name is a predicate

with one argument, child has two arguments, etc...

Dynamic predicates can be of one of two "modes": either "add" or "replace". "Add" mode

for a predicate is specified by preceding it with the symbol "+", otherwise default "replace"

mode is assumed. The mode governs the way the parameters in the object creation will

affect the local database of the object. In the example, needs is of mode "add". In the next

section on object creation, we shall show how "mode" helps in the implementation of

default attributes.

9

The dynamic part of the class definition is where the programmer gives the initial state of

the objects that will eventually be created from this class. This initial state takes the form of

facts which are instances of the predicates declared in the dynamic declaration list. A

declared dynamic predicate need not have initial facts but every initial fact must refer to a

declared dynamic predicate.

The static part lists invariant facts and rules common to all objects of the defined class. No

explicit declaration of name and arity is required. The difference between dynamic and

static predicates is that new dynamic facts may be passed as parameters when an object is

created; they can also be asserted and/or retracted during program execution. Static

predicates cannot be modified in any way during the program execution. Defining the same

predicate both as static and dynamic is an error in Scoop.

The <body> defines initialisation code to be executed upon object creation. With the

exception of the class name and the keywords class and end, all parts of the class

definition are optional.

Object creation

Classes are merely definitions. It is the objects created from the classes that will own local

databases containing dynamic clauses and have the behavior outlined by the definition. In

Scoop, an object is created with the new/3 predicate:

new(Object_ref, Class_name, Dynamic_clause_list)

Class_name must be instantiated to the name of a defined class. The Scoop interpreter

creates a new object of that class and generates a unique identifier for it. This identifier is

unified with the Object_ref argument of new. The newly created object will be said to be

of class Class_name. An object can obtain a reference to itself with the primitive

thisobject(X).

At object creation, the object's internal database will be initialized with all the dynamic

clauses defined in the dynamic part of the class. The object will also have access to all its

class' static predicates. In this section, we only consider the simple case of a class without

a super_class; inheritance will be covered later.

10

Dynamic_clause_list is a list of facts compatible with the dynamic predicates declared in

the class. These facts will be added to the internal database of the object after the

initialization. Here the mode of the predicates is taken into account. If a clause (or a set of

clauses in the list) refers to a predicate with replace mode, all the initializing facts for this

predicate will be replaced by the new fact (or set of facts). On the other hand, if it refers to

a predicate with add mode, the new fact (or set of facts) will simply be added after the

initializing facts. The two modes correspond to the familiar Prolog operations of

consulting and reconsulting files.

To illustrate the difference between modes, consider the effect of the following statement

creating a new person according to the class defined in Figure 1:

new(Fred, person,
[name(fred), child(ann,female), child(joe,male), needs(money)])

The local database created for Fred would contains the following facts:

name(fred). % replacing "name (unknown)."
sex(male). % default value
needs(love). % initial fact
needs(money). % added to the previous default clause.
child(ann,female). % this shows that several clauses for the same predicate
child(joe,male). % can be inserted at once.

Scoop objects function like Prolog programs. Launching the proof of a goal G within an

object O is termed a remote call and is expressed as "O:G". In the case of the person Fred,

the query "Fred:son(S)" would succeed with S=joe. Similarly, the query "Fred:needs(N)"

would succeed twice with N=love then N=money. "Fred:sex(red)" would fail.

Inheritance and scope of predicates

When a class C1 is defined by an is_a clause to be a subclass of another C2, objects of

class C1 have access, not only to the predicates of C1 but also to others inherited from C2.

This inheritance can be affected by the redefinition of predicates in sub-classes and we must

clarify the scope or visibility of predicates in Scoop objects. This discussion will also be

pertinent to the next section which covers the scope of predicates in remote calls between

objects.

In the person example, there was no inheritance. To illustrate the scoping rules, we shall

use the following contrived example where class C "is_a B" which "i s_a A" .

11

class a(p1/1).
static.

p2(a).
p3(a).

end.

class b(p1/1).
is_a a.
static.

p4(b).
end.

class c.
is_a b.
static.

p2(c).
p5(c).

end.

First, we introduce the concept of inheritance chain. The inheritance chain of an object is

defined as the ordered list of classes beginning by the class from which the object was

created followed by all the classes inherited through the is_a relationship. In the example,

if X is an object of class C, the inheritance chain of X is [C, B, A]. C is said to be the

lowest class in the chain and, A, to be the highest. B and C are said to be below A . With

these definitions, we can proceed with the scoping rules. You should remember that the

scoping rules of Scoop are static in the sense that when you know the context of a call or

predicate invocation, you always can determine which clauses will be used to try the

reduction (and the class where they appear) by direct inspection of the source program.

Scoping rules:

1. A predicate is said to be defined in a class if appears either in the static part of that
class or in its dynamic declaration part.

2. A predicate is visible in its defining class.

3. A predicate visible in a class C1 is also visible in any class C2 immediately below
C1, unless redefined in C2. By redefinition, we mean that a predicate with the
same name and arity is defined in the class. A predicate visible in a class but not
defined in this class is said to be inherited.

Briefly, a goal occuring in a given class context refers to the first definition (or

redefinition) encountered starting at the class of the context and going up the inheritance

chain. An example can illustrate the rules. In our example, here are the predicates visible

in each class context:

12

in A:
from a: p1 p2 p3

in B:
from b: p1 p4
from a: p2 p3

in C:
from c: p2 p5
from b: p1 p4
from a: p3

Clause access: local & remote calls

An object is a context or a black box that keeps track of internal information and provides

services to computing agents. Access by an object of one of its own predicates is called a

local call. Access by an object of a predicate in another object is called a remote call and, in

the simplest case, it is expressed as "Object:Goal" (It is worth noting here that both static

and dynamic predicates can be accessed with a remote call).

In Scoop, inheritance and sub_classing means that an object can be viewed at various levels

and at each level, different clauses are visible. Different forms of the calls allow access to

all levels.To understand the variants of accessing, it is useful to define a computation

context as a couple (Object, Class) where Class is the defining class of the Object or one of

its super_classes. The couple (Object, Class) will also be referred by "Object as Class". In

Simula, this notion of context is called the qualification of a reference. The syntax of a call

takes one of the following forms:

 remote calls
X: g
X as class_name: g

 local calls
self: g
self as class_name: g
super: g
g % actually a local call

X: g, where X denotes an object, is the simplest remote call. It means calling the goal g in

the context of the object X at its defining class, that is the one used as class_name in the

new statement.

13

X as class_name: g means calling the goal g in the context of object X viewed as an

object of class class_name. Class_name is usually a super_class of the actual class of X ,

but it could also be a sub_class. The predicate invoqued for g is the definition of g visible

from theclass_name. Self: g and self as class_name: g are the same as the previous

forms except that the keyword "self" designate the actual object within which the call is

made (in the same fashion as Smalltalk). The use of self is a convenience; it is possible to

to the same thing by retrieving a self-reference with thisobject(S) and using S instead of

self thereafter.

Super: g means calling g in the context of the actual object but one class higher than the

class in which "super: g" occurs.

Finally, in the body of a class C, simple use of a goal identifier G (defined in C or its

super_classes) is equivalent to "self as C: G".

Assuming the previous definitons of classes a, b and c and the object X created with

new(X, c, []), the following shows how to access some of the defined predicates (i)

within the context of b and (ii) from a context external to X:

predicate from the context from a context
accessed of b outside X

p1 of a super : p1(_) X as a : p1(_)
self as a : p1(_)

p1 of b p1(_) X : p1(_)

p2 of a p2(_) X as a : p2(_)

p2 of c self : p2(_) X : p2(_)

Asserting and retracting dynamic clauses

In Prolog there is no assignment statement to alter state, but clauses may be added or

removed from the database. In Scoop, we use the same mechanism. The predicates

asserta/1, assertz/1 and retract/1 are provided for this purpose and only dynamic clauses

may be asserted and retracted during program execution.

14

In order to protect locality and protection for an object's state, Scoop does not allow

asserta/1, assertz/1 or retract/1 as goals in a remote call. This restricts modification of an

object's database to its own context. Naturally, if an object wants to provide an access to

the dynamic management of its clauses from other contexts, it can simply have static

predicates in its class definition allowing it. This means that no object can modify another's

state without its knowledge or permission.

Management and access of dynamic clauses is more complex and onerous than for static

clauses. In particular, dynamic clauses are replicated in each object whereas static clauses

exists in only one copy. It is good Scoop practice to declare as dynamics only the

predicates that will be asserted, retracted at run-time or passed as parameters at object

creation.

4. CONCURRENT PROGRAMMING IN SCOOP

In the preceding sections, Scoop classes and objects have been introduced. However,

classes and objects are only static entities. The active agents in Scoop are the processes.

Initially, there is only one active process: the main program. However, it is possible to

create others dynamically to execute independent sequences of goals. Scoop processes

execute in parallel, time-sharing the interpreter; they synchronize and exchange information

by message passing.

Process definition

Process definition in Scoop is a direct extension of class definition. Here, the <body> in

the begin part (see figure 1) is considered to be a sequence of goals that a created process

will attempt to demonstrate in parallel with its creator:

The initial process of a Scoop Program is defined by a "main class" where the "begin" part

is mandatory and this "main" class must appear as the very last class definition in a Scoop

program.

15

main (<dynamic declaration>).
dynamic. . . .
static. . . .
begin.

<sequence of goals>
end.

Process creation and scheduling

Processes are created with the predicate new_process/3:

new_process(Process, Class_name, Dynamic_clauses_list).

As with the new primitive, this operation creates an object of class 'Class_name'. Facts in

the 'Dynamic_clauses_list' act as parameters. Furthermore, an independent process, is

created and launched to execute the sequence of goals in the context of the object. A unique

process identifier is generated for that process (different from the object reference) and it is

the process identifier which is returned in the 'Process' argument. Process identifiers can

be used to effect communication via message passing (to be described later).

It is important to note that object references are distinct from process references. Objects

refer to static entities whereas processes refer to dynamic executions of code. Initially,

there is a strong association between a newly created process and the object serving as its

initial context, but the process may move to execute in the context of other objects and

several processes may be present in the same object at the same time. A process can obtain

its own process reference with the primitive thisprocess(P) which unifies P to the unique

reference of the current process. A reference to the object context where a process is

currently executing is obtained via thisobject(O).

Although we have chosen not to implement automatic mutual exclusion of processes within

objects (as with monitors), it should be noted that the initial object of a process is private to

the process and protected from any external tampering. This comes about because remote

calls which could alter the object's state make use of object references and the object

reference of a process is initially unknown. However, a process could change this by

obtaining and broadcasting the reference of its object.

In the current implementation, Scoop processes are executed by time sharing. The

interpreter repeatedly gives each process in a ready_queue a time slice until the queue is

empty. Thus, processes in the ready_queue proceed in quasi-parallel fashion whereas

16

processes not in this queue are quiescent or passive. A newly created process is deemed

active and placed at the tail end of the queue. Two scheduling primitives are provided to

move processes in or out of the ready_queue. They are:

activate (Process)
and passivate (Process)

where Process must be a process reference.

Process Synchronisation

In order to perform coordinated computing, processes must be able to synchronize and

exchange information. Scoop communication and synchronisation primitives are send/2

and wait/2:

SEND (<channel> , <msg>)
and WAIT (<channel> , <msg>)

The <channel> is used to select a receiver, whereas the <msg> is meant to carry the bulk

of the information. For a successful message transfer to occur, both arguments in the send

and the wait must match. The familiar appearance of these primitives masks some subtle

points in the Scoop implementation. In particular, there is an important difference in the

way that the "channel" and the "message" arguments are treated.

Send is non-blocking and it never fails. It creates a term of the form "msg(C,M)" with

copies of send 's <channel> and <msg>parameters and places this term in a global

message database. A process executing a wait is made to wait (if necessary) until a

message with a unifiable <channel> parameter is available. When this occurs, the message

is removed from the database and an attempt is made to unify the <msg> parameter. If this

succeeds, the waiting process proceeds having extracted the message information via

unification; if it fails, the wait operation is deemed to have failed and the process

backtracks. Thus, a mismatch on <msg> fields can cause failure and backtracking but a

mismatch on <channel> can only cause waiting. Note also 1) that a sent message can

reactivate at most one waiting process and 2) that because messages are copies, the

Concurrent Prolog technique of returning answers via un-instantiated variables in messages

will not work.

An important aspect of the proposal is that that arbitrary terms are allowed for both

arguments. In particular, although the <channel> could be a process reference and we are

17

not restricted to sending to either designated objects or designated processes. In the terms

of SPOOL, Scoop can have have anonymous recipients. A few examples will show the

flexibility of the mechanism. Below, the <channel> is a constant denoting the type of

service required. There could be multiple servers.

Sending process: Receiving process:

send(print, int(123)),... ...wait(print, int(X)),...

In the next example, a message is sent to a known Process and the built-in

predicate, gensym, is used to generate a unique return address for the reply. This address is

sent as part of the original message.

SENDER: RECEIVER:

gensym(Ret_Id) thisprocess (P),
send(Process , info(Input, Ret_Id)), wait (P, info(X, Ret)),

... < compute answer > ...
wait(Ret_Id, ans(Output)),... send (Ret, ans(...)),...

For simulation, messages can also be used to implement the seize and release operations on

resources:

seize(R) :- wait (R,1).
release(R) :- send(R,1).

5. SIMULATION

Our model for object-oriented programming, Simula67, exhibited the power of its

methodology by being a general-purpose language which could be extended easily to

handle discrete-event simulation. After implementing a first version of Scoop called

POOPS [Vauc86], we decided to extend it for simulation and created SIMPOOPS

[Vauc87]. The extention was found to be trivial and Scoop retains the simulation features.

In discrete-event simulation, there is implicit sequencing between activities based on the

concept of simulated time for events. It is ironic that the main difficulty we encountered in

this extention, was limiting the inherent concurrency of Scoop processes to ensure that only

one process was active at one time.

18

Essentially, we extended the original scheduler with a sequencing set (SQS): that is a queue

of doublets < Process, scheduled event_time > ordered by increasing event_time. Now,

when the ready_queue is empty, the interpreter looks into the sequencing set and transfers

the processes scheduled at the next instant of simulated time into the ready_queue. It also

updates its internal clock to the new time. Program execution ends when both the

ready_queue and SQS are empty. Three new primitives were also added:

- hold (DT) :

Causes the executing process to suspend itself for DT units of simulated time.
This is implemented by removing the active process from the ready_queue and
placing it in the sequencing set according to its scheduled reactivation time. The
execution of hold prevents backtracking to previous goals.

- time (T) :

Unifies T with the current simulated time.

- terminate :

Cancels all current and future events and stops the simulation. This is useful
when there is cyclic activity in a system and quiescence is never achieved.

Other types of synchronisation are easily implemented through the built-in SEND and

WAIT primitives (i.e. SEIZE and RELEASE). In addition to these, other predicates such as

uniform(A,B,Ts) were added to generate various random distributions. In all about 30

lines of code were required to implement all the simulation primitives.

19

6. EXAMPLES

The first example below first presents a MUTEX class which implements "semaphore"

operations for mutual exclusion in a concurrent environment. Next, we show the

implementation of a STACK data type. A local predicate, pile(X), stores the stack state

and the implementation uses assert/retract to modify state. To ensure correct operation

with parallel processes, STACK is defined "as_a" mutex object and non-atomic predicate

bodies are bracketed by calls to P and V to ensure mutual exclusion.

class mutex.
static.

p :- thisobject(O), wait(O, 1).
v :- thisobject(O), send(O, 1).

begin.
v. % initialisation

end.

class stack.
is_a mutex.
dynamic.

pile([]).
static.

push (X) :- p, retract(pile(S)),
assert (pile([X | S])), v.

pop (X) :- p, retract(pile([X | S])),
assert (pile (S)), v.

top (X) :- pile([X | S]).
empty :- pile ([]).

end.

Figure 2 - Stack Definition

Stacks can be created and used as follows:

new(St,stack,nil), St.push(1), St.pop(X), write(X),. . .

20

Figure 3 shows processes executing in parallel. Scan objects print out the leaves of binary

trees they are given at creation time. The parameter margin serves to format the output. The

main program creates two scan objects as processes and the output shows the parallel

execution.

class scan (margin/1,tree/1) .
static.

 trav(t(L,R)):- trav(L), trav(R) .
 trav (X) :-
 integer(X),
 margin(M), tab(M),
 writeln(X).
begin.
 tree(T), trav(T).
end.

main.
begin.
 new_process(_,scan, [1 , t(t(1,t(3,5)),t(6,99))]),
 new_process(_,scan, [10 , t(t(1,2),t(3,4))]).
end.

The Output:
 1
 1
 2
 3
 5
 3
 4
 6
 99
*** THE END ***
CPU : 0.77 sec

Figure 3. Parallel processes

The next example in Figure 4 shows interprocess communication using the send and wait

primitives. The example is adapted from [Dahl72]. There are two producer processes

similar to the processes of Figure 3. Each generates an ordered sequence of integer values

terminated by the constant eof and sends them along a communication channel. The merge

process merges values from both channel to keep the output ordered. As in [Shap83], the

21

merge operation is implemented as a tail recursive procedure with the cut (!) operator to

prevent needless growth of the backtrack stack.

class prod (ch/1,tree/1) .
static.

 trav (t(L,R)):- trav(L).
 trav (t(L,R)):- trav(R) .
 trav (X) :- X is_a number,

ch(C), send(C,X).

go:- tree(T), trav(T).
go:- ch(C), send(C,eof).

begin.
 go.
end.

class merge.
static.

merge(eof,eof):- !.
merge(V1,eof):- writeln(V1), wait(1,V1x),!, merge(V1x,eof).
merge(eof,V2):- writeln(V2), wait(2,V2x),!, merge(eof,V2x).
merge(V1,V2) :- V1<=V2, writeln(V1),

wait(1,V1x),!, merge(V1x,V2).
 merge(V1,V2) :- V2<V1, writeln(V2),
 wait(2,V2x),!, merge(V1,V2x).
begin.
 wait(1,V1), wait(2,V2), merge(V1,V2).
end.

main .
begin.
 new_process(_,prod, [ch(1), t(t(3,7),33)]),
 new_process(_,prod, [ch(2) , t(1,t(6,99))]),
 new_process(_,merge,[]).
end.

The Output: 1
3
6
7
33
99
*** THE END ***

Figure 4. Synchronised Merge

class client (id/1).

22

static.
seize(R) :- wait(R,1).
release(R) :- send(R,1).

begin.
uniform(0,10,Ta), hold(Ta),
id(N), Nx is N+1, new_process (_, client, [id(Nx)]),

write(N), writeln(" Waiting"),
seize (res),

write(N), writeln(" Entering resource"),
uniform(0,8,Ts),
hold(Ts),

release (res),
write(N), writeln (" Leaving system").

end.

main.
begin.

send(res,1),
new_process(_, client, [id(1)]),
hold (20),
writeln("Closing down system"),
terminate.

end.

OUTPUT:

1 Waiting
1 Entering resource
2 Waiting
3 Waiting
1 Leaving system
2 Entering resource
4 Waiting
2 Leaving system
3 Entering resource
3 Leaving system
4 Entering resource
Closing down system

*** THE END ***
CPU : 0.95 sec
EVALS: 3779
FAILS: 453

Figure 5. A single server queue simulation.

Figure 5 shows a typical single server queueing simulation and the output generated. Each

arriving customer generates his successor and provides him with a unique identifying

number. Inter-arrival and service times are random. Seize and release operations have been

23

implemented trivially via message passing. The main program controls the simulation. It

starts the first customer and eventually shuts down the simulation. The output trace shows

the interleaving of the activities of the various objects. The statistics at the end of the listing

show that the execution of this program took about one second on a VAX8600.

CLASSES
class(client)
class(main)

STATIC PREDICATES
static_predicate(client,seize)
static_predicate(client,release)

DYNAMIC PREDICATES
obj_pred(client,[id])
obj_pred(main,[])

CLAUSES
1: clauses(client,seize(_89),[wait(_89,1)],_90)
2: clauses(client,release(_81),[send(_81,1)],_82)
3: clauses(client, begin, [uniform(0,10,_70), hold(_70), id(_71), _72 is _71+1,

new_process(_,client, [id(_72)]), write(_71), writeln(Waiting), seize(res),
write(_71), writeln(Entering resource), uniform(0, 8,_73), hold(_73),
release(res), write(_71), writeln(Leaving system)], _74)

4: clauses(main, begin, [send(res,1), new_process(_,client, [id(1)]), hold(20),
writeln(Closing down system), terminate], _45)

 Figure 6. Simulation - Compiler Output

This program, which apes the Simula or GPSS style, looks familiar and is easy to

understand. On the other hand, the Prolog clauses produced by the compiler to drive the

interpreter are quite cumbersome. They are shown in Figure 6. Many object-oriented

Prolog systems require users to program in this style.

Finally, in Figure 7 shows an extract from the largest Scoop program written so far: about

600 lines of Scoop which combined with another 500 lines of pure Prolog implement a

small expert system shell with a multi-window graphic interface. The figure shows part of

the definition of a dialogue window which is defined as a parallel object to allow multiple

simultaneous interactions. Of interest is the "rect(....)" dynamic clause which specifies a

default size and position for dialogue windows. This work by Augustin Paar, an MSc

Student in our Department, showed that Scoop was a useful and practical programming

24

tool for large programs. By using a blend of Prolog and Scoop, acceptable interactive

response could be achieved.

class obj_parallele (id/1).
is_a obj.
static. . . .
end.

class dialogue(modal/1, title/1, shape/1, rect/4).
is_a obj_parallele.
dynamic.

rect(50,50, 150,350).
static.

send(Showdialog) :- id(Id), senddialog(Id, Showdialog).
 select :- id(Id), d_select(Id).
 hide :- id(Id), d_hide(Id).

...etc...
end.

Figure 7. Extract from SCOOP Graphic Expert

7. IMPLEMENTATION

Scoop is a compiler/interpreter system implemented in Prolog. Different versions have been

implemented with several brands of Prologs and run on Vax, Sun and MacIntosh

computers. At present the program is about 450 lines of code divided evenly between

interpreter, compiler and formatted trace output. More details on the language and its

implementation are available in [Vauc86 and Vauc87].

One of the main problems in a concurrent/logic integration is the combination of

backtracking and parallelism. The problem lies in the implementation of backtracking to

undo the variable bindings (instantiations). Typically, a meta-interpreter for Prolog undoes

bindings in the reverse order to which they were made. When one tries to simulate co-

routines or parallel behaviour, this is no longer the case. Our solution implements both

backtrack and parallelism by exploiting a simple fact. When a clause is asserted and added

into the database, a new copy of each of its variables is created. To backtrack, it suffices to

retrieve the copy from the database to restore the state to what it was. This method of

freezing and melting variables is also described by Sterling and Shapiro [Ster86]. This

25

method of keeping track of state was forced on us by the use of C-Prolog which does not

tail-recursion optimisation and forced us into a failure-driven interpreter loop.

Presently, our main concern is speed. The Scoop interpreter is about 60 times slower than

the underlying Prolog interpreter, i.e. about 100 LIPS versus 6000 LIPS. Recent tests have

shown that much of the overhead is due to the maintenance of backtrackable states.

However, speed can be traded for granularity of parallelism. Any term which has no Scoop

definition is assumed by the interpreter to be implemented in the underlying Prolog and

passed on to the native Prolog interpreter. By judicious mixing of Scoop and Prolog,

reasonable levels of performance, modularity and parallelism can all be achieved.

We have improved the compiler so that most method-lookup is done at compile time.

Moreover, we are modifying the interpreter to take advantage of a new Prolog with tail-

recursion and we plan to modify an existing Prolog engine to implement Scoop directly.

8. CONCLUSIONS

Scoop integrates concurrent, logic and object-oriented programming paradigms in a natural

way. Thus, Scoop has the ability to describe structured dynamic systems and to encode

knowledge. The important features of Scoop are:

1) provisions of both local logic programming and global object-oriented structure

2) lexical block structure designed to promote and enforce modularity and to allow

verification and optimisation via a compiler,

3) use of familiar programming cliches: the concepts of Simula67 for OOP and those

of standard Prolog (unification & backtracking) for local behaviour,

4) provision for parallel activity with a clear distinction between static entites (objects)

and dynamic computing agents (processes)

5) acceptable performance and

6) discrete simulation capability.

At present we are using Scoop to implement a better distributed system with a remote

graphic interface server. Scoop will also serve as a vehicle for language experimentation. In

particular we will experiment with alternatives to multiple-inheritance, study various ways

26

to hide local information and enforce more protection. However, our main concern is speed

and we plan to modify an existing Prolog engine to implement Scoop directly.

9. ACKNOWLEDGEMENTS

This research was supported in part by the Natural Science and Engineering Research

Council of CANADA. The authors also wish to thank Charles Giguère, Director of the

Computer Research Institute of Montréal (CRIM), who provided the computer facilities for

the development of the early versions of Scoop.

10. REFERENCES

[Clar86] Clark K. and Gregory S. Parlog: Parallel Programming in Logic, ACM
Trans. on Programming Languages and Systems, 8 , 1 (Jan. 1986), pp. 1-49.

[Chik84] Chikayama, T. Unique Features of ESP, Proc. International Conference on
Fifth Generation Computer Systems, ICOT, Tokyo, pp. 292-298, (1984).

[Chou87] Chouraki, E. and Dugerdil, Ph. The Inheritance Processes in Prolog:
Multiple vertical with point of view and multiple selective with
point of view, in GRTC technical paper #GRTC/187bis/Mars 1987 (CNRS
Marseilles).

[Cloc81] Clocksin, W. & Mellish, C. Programming in PROLOG, Springer-Verlag,
Berlin, (1981).

[Colm83] Colmerauer, A. , Kanoui H. et Van Caneghem M. Prolog, bases théoriques
et développements actuels, Techniques et Sciences Informatiques, Vol. 2,
N° 4, pp. 271-311, (avril 1983).

[Dahl70] Dahl, O-J., Myhrhaug, B. & Nygaard, K. (1970). SIMULA Common Base
Language, Publication S-22, Norwegian Computing Center, Blindern, OSLO.

[Dahl72] Dahl, O-J., Dijkstra, E. & Hoare, C.A.R. (1972). Structured Programming,
Academic Press, London.

[Doma86] Domán, A. Object-PROLOG: Dynamic Object-Oriented
Representation of Knowledge, SzKl Comp. Research and Innovation
Center, 1986, 14 p.

[Fuku86] Fukunaga, K. and Hirose, S. An Experience with a Prolog-based
Object-Oriented Language, in Proc. of Object-Oriented Prog. Sys., Lang.

27

and Applic. '86 (OOPSLA), ACM Sigplan Notices 21 , 11 (Nov. 1986), pp.
224-231.

[Futo86] Futó, Y. and Gergely, T. Logic Programming in Simulation, in
Transactions of the Society for Computer Simulation 3 , 3 (July 1986), pp. 195-
216.

[Kahn82] Kahn, K., Intermission - Actors in Prolog, in Logic Programming,
(Eds. Clark, K.L. & Tärnlund, S-A.), Academic Press, London, pp.213-228,
(1982).

[Kahn86] Kahn, K., Tribble, E.D., Miller, M.S. and Bobrow, D.G. Objects in
Concurrent Logic Programming Languages, in Proc. of Object-Oriented
Prog. Sys., Lang. and Applic. '86 (OOPSLA), ACM Sigplan Notices 21 , 11
(Nov. 1986), pp. 242-257.

[Lalo87] Lalonde, W.R. A Novel Rule-Based Facility for Smalltalk, in
Proceedings of ECOOP'87, Bigre+Globule 54 (Juin 1987), pp. 193-198.

[Mell86] Mello, P. and Natali, A. Programs as Collections of Communicating
Prolog Units, in Proc. of ESOP '86, Springer-Verlag Lecture Notes in Comp.
Science 213 , pp. 274- 288.

[Mell87] Mello, P. and Natali, A. Objects as Communicating Prolog Units, in
Proceedings of ECOOP'87, Bigre+Globule 54 (Juin 1987), pp. 233-243.

[Mizo84] Mizoguchi, F., Ohwada, H. and Katayama, Y. LOOKS: Knowledge
Representation System for Designing Expert System in a Logic
Programming Framework, in Proceedings of the International Conf. on
Fifth Gen. Comp. Sys., 1984, pp. 606-612.

[Pere84] Pereira L.M. and Nasr R. Delta-Prolog: a Distributed Logic
Programming Language, Proc. International Conf. on Fifth Generation
Computer Systems, ICOT, Tokyo, pp, 283-291

[Robi82] Robinson, J.A. & Sibert, E.E., LOGLISP: Motivation, Design and
Implementation, in Logic Programming, (Eds. Clark, K.L. & Tärnlund, S-
A.), Academic Press, London, pp.299-313, (1982).

[Shap83] Shapiro E. & Takeuchi A., Object oriented programming in concurrent
Prolog, New Generation Computing , Vol 1, pp. 25-48, (1983).

[Shap86] Shapiro E. Concurrent Prolog: a Progress Report, Computer, 19 , 8,
pp. 44-54 (Aug. 1986)

[Stab86] Stabler, E.P. Object-Oriented Programming in Prolog, AI Expert ,
October 1986, pp. 46-57.

[Stef85] Stefik M. & Bobrow D., Object-Oriented Programming: Themes and
Variations, The AI Magazine, pp. 40-62, (1985).

[Ster86] Sterling L. and Shapiro E. The Art of Prolog, MIT Press, 1986.

28

[Vauc86] Vaucher, J.G. & Lapalme, G., (1986). POOPS: Object-Oriented
Programming in Prolog, Pub. Nº 565, Département d'informatique et de
R.O., Université de Montréal.

[Vauc87] Vaucher, J.G. & Lapalme, G. Process-oriented simulation in Prolog,
SCS Multi-Conference on AI and Simulation, San Diego, Jan. 1987, pp.41-46,
(1987), also available as Pub. Nº 604, Département d'I.R.O., Univ. de
Montréal.

[Yone87] Yonezawa, A. & Yokoro, M. (Editors) Object-Oriented Concurrent
Programming, The MIT Press, Cambridge, Mass., (1987).

[Zani84] Zaniolo, C. Object-Oriented Programming in PROLOG, Proc.
International Symposium on Logic Programming, Atlantic City, IEEE, pp. 265-
270, (1984).

