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Course Objectives
Upon taking this course, you will:

e understand the problem of gradient estimation for stochastic
dynamical systems driven by discrete events

e study the basic concepts required to read most books available in
the subject (Cassandras and Lafortune 99, Fu and Hu ’97,
Glasserman 91, Ho and Cao ’91, Pflug 96, Rubinstein ’9, etc.)

e learn about the popular estimators for sensitivity analysis:

— Infinitesimal Perturbation Analysis

— Smoothed Perturbation Analysis, and beyond...
— Score Function Method

— Weak Derivatives, and beyond...

e distinguish between the methods and the estimators

e acquire the methodology to construct estimators for specific
applications following our methodological approach
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Course QOutline

PART |

e Introduction and Motivation
e Review of Probability Concepts
e The Pathwise vsthe Distributional Approaches: overview

PART Il

e Main Results: Pathwise Analysis (Lipschitz continuity and
conditional MC)

e Main Results: Distribtional Analysis (weak differentiation of
measures)

e Examples of Application
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Gradient Estimation Problem
Model: Complex stochastic systems, control variable 6 € R?®.
e Physical process: Stochastic process {X,,(0)} on (£2,§,P).

e Sample performance : L(X;(0,w), ..., X, (0,w)) = h(0,w). A
real-valued functional of the trajectories of the process.

e Performance function : J(0) = E[h(0)]
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Gradient Estimation Problem
Model: Complex stochastic systems, control variable 6 € R?®.

e Physical process: Stochastic process {X,(6)} on (), F,P).

e Sample performance : L(X;(0,w), ..., X, (0,w)) = h(0,w). A
real-valued functional of the trajectories of the process.

e Performance function : J(0) = E[h(0)]

Problem: Performance function not available in closed analytical form,
but can be estimated : Uy, ..., Uy ~ P independent trajectories, use
sample average.
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Gradient Estimation Problem
Model: Complex stochastic systems, control variable 6 € R?®.
e Physical process: Stochastic process {X,(6)} on (), F,P).

e Sample performance : L(X;(0,w), ..., X, (0,w)) = h(0,w). A
real-valued functional of the trajectories of the process.

e Performance function : J(0) = E[h(0)]

Problem: Performance function not available in closed analytical form,
but can be estimated : Uy, ..., Uy ~ P independent trajectories, use
sample average.

Goal: Estimate also the sensitivity of the performance function w.r.t :
Construct a functional G € R* of a derivative process {~7,(0)}, adapted
to the natural filtration and such that
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Applications: Queueing Systems

e Physical state: queue lengths X; € R®
e Residual clocks: each queue has residual clocks Y; € R,
e Events: arrivals and services (polling, etc).

Occupancy process: X; Storage Process:
S, s, S Z,. sojourn times
service | T

epochs J | !

arrival epochs
Zn+1 — <Zn — An>+ + Sn

e Performance: Average sojourn times, loss probabilities, etc.

e Control variables of interest: arrival rates, service parameters,
buffer sizes, etc.
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Applications: Risk Theory
U,: surplus of insurance portfolio at time ¢

J

Surplus process:
dU(t) = |c+ 6U(t)|dt — dS(t)

O: interest rate

e Performance: ruin probability,
expected amount of ruin, etc.

e Control variables of interest:
arrival rates, expected claim
amount, premium ¢, etc.

follows ODE
Yn /

T

Use a dual process: X; a storage
process (queue):

+
Xn — (Xn—le_éAn . g(l - 6—5An>> + Yn
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Applications: Transportation

e Performance: waiting times, costs.

e Control variables of interest:
frequency, arrival rates, etc.

line

Platform occupancy {X;}

Residual clocks: train and
passenger arrivals, train
departure at platform.

Possible events: Arrivals (per
source) and train departure.

Arrival of transfer passengers
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Process Description

e Physical state space S c RY, d event-timing clocks 7 = (R™)4
e Event space F , possible events at state v € S are I'(x) C E.

e Nextevent e(x,y) = argmin{y; :i € I'(z)}, (z,y) € S x 7.

o Elapsedtime: 7(x,y) = Y

vy) it
System’s dynamics:
e, H------------ =
€, 1 = Residual clocks
e, {---=
e, {--------=

{ X150 < s < 7} follows deterministic dynamics (ODE).
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Process Description
e Physical state space S c R", d event-timing clocks 7 = (R™)“
e Event space F , possible events at state v € S are I'(x) C E.
e Nextevent e(x,y) = argmin{y; :i € I'(z)}, (z,y) € S x 7.
o Elapsedtime: 7(x,y) = Y ) -

System’s dynamics:

<—= timeelapsed
el 1 - -----~ =
e, =
@E next event
e, |--—------=

{ X150 < s < 7} follows deterministic dynamics (ODE).
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Process Description

e Physical state space S c RY, d event-timing clocks 7 = (R™)4
e Event space F , possible events at state v € S are I'(x) C E.
e Nextevent e(x,y) = argmin{y; :i € I'(z)}, (z,y) € S x 7.

o Elapsedtime: 7(x,y) = Y ) -

System’s dynamics:

Prob[ X, € A| Xy =2,Y, =y| = po(A; x,e(x,y)),
Prob[Yii,(e) € B| Xy = x,e(x,y) = ¢e] = G.9(B, x)

Result: Define Z;(0) = (X:(0),Y;(#)) on S x 7. The embedded process
{Z,(0)} observed only at event epochs is a Markov chain in a general
state space.

= | {Z,(0)} is a Generalized Semi-Markov Process.
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A Matter of Representation

e Process {Z,} in a state space S C R".
e Sample performance L(Zy, Z, .. .)
e Probabilistic description: Z,, : ) — R? is a mapping for each n.

e Sample performance is a function: h(0,w) = L(Z1(w), Zo(w),...): &
random variable .

e Performance measure is an expectation, E[L = [ L(z

J(0) = Eg[L(Z1, Zo, ...)] = E[1(6))

How does the performance measure depend on 07?7? Is is through the
sample process, or throught the distribution??

Mathematical formulation: probability theory
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Probability Theory: a review
Information Structure
e A set () of states of nature

e A set of subsets of (2, a o-field § that describes all the possible
observables of the model (events)

13
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Probability Theory: a review
Information Structure

e A set () of states of nature

e A set of subsets of (), a o-field § that describes all the possible
observables of the model (events)

EXAMPLE 1.
Description of whether, uncertainty. () are all the states of nature:
climatological conditions.

F=10,{w1}, {ws}, {wi, wa}, {wi,ws}4 Q1 is used to describe the two
observables w;: rainy day , and w,: sunny day .

§ describes the information structure that these two observables
provide.

If we want to describe also observables as sunny in the morning and
rain in the afternoon , § is not sufficient.

—> | Information structure (€2, §) depends on model .
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Probability Theory: a review
Information Structure and Random Processes
e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : () — R.
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Probability Theory: a review
Information Structure and Random Processes

e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : () — R.

Definition: A random variable on (€2, §) is a function X : 2 — R that is
measurable with respect to 3, that is,

{fwe: Xw)<z}eF, VreR
EXAMPLE 2. X(w;) =7 enumerates the possible observables:

w1 = Rainy day, ws; = Cloudy in the morning,
wy = Sunny day, w; = Rain in the afternoon,

then X is not a r.v. There is an information structure o(X') generated
by the mapping X , it contains all the observables of () that are
described by X.

Any mapping X : Q) — Risar.v.on (2, 0(X))
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Probability Theory: a review
Information Structure and Random Processes
e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : (2 — R. Information structures o(X) — B(R).
e Probability Measures
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Probability Theory: a review
Information Structure and Random Processes
e A set () of states of nature

e A o-field § that describes all the possible observables of the model.
e Random variables X : (2 — R. Information structures ¢(X) — B(R).

e Probability Measures
Definition: A probability measure P on (€, F) is a function P : § — [0, 1]

P@) =0, PQ) =1 P (ﬁ An> - iIP’(An).

0 @ > D>

N\ / Y,

Probabilities : inverse mapping
State sapce S C R. Induced probability measure Px on (S, B(.5)).
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Probability Theory: a review
Information Structure and Random Processes
e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : (2 — R. Information structures o(X) — B(R).
e Probability Measures: P on (€2, §) and Px on (S, B(.5))

e Expectations
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Probability Theory: a review
Information Structure and Random Processes
e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : (2 — R. Information structures o(X) — B(R).
e Probability Measures: P on (€2, §) and Px on (S, B(.5))

e Expectations

Definition: Fix(z) = Px[X < z] =P{w € Q: X(w) < x} is the disribution
function of a random variable X. For any function F' os X, the
expectation of F'(X) is defined as

E[F(X)] = /S F(x) Py (dz) = / FIX (@) P(dw)

Q
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Probability Theory: a review

Information Structure and Random Processes
e A set () of states of nature
e A o-field § that describes all the possible observables of the model.
e Random variables X : (2 — R. Information structures o(X) — B(R).
e Probability Measures: P on (€2, §) and Px on (S, B(.5))
e Expectations

e Random Processes {7, } and performance measures

Definition: A random process on (€0, §) is a sequence X, such that for
eachneN, X,:Q—-R,and §, =0(Z;;i <n) C 3.

A filtration is a sequence of increasing o-fields on €. In particular,

F = (3.;n € N) is called the natural filtration of the process.

A functional L(Zy,...,Z,) is also a random variable » on (€, §,). The
performance measure is then: J(0) = Ey[L(Z1, Z5,...)] = E|h(0)]
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A Matter of Representation

e Markov process {Z,} in S C R%
Transition kernels depend on 6 :

PQ[Zn+1 cA ‘ Zn — Z]

e Sample performance L(Z7)

° Performance measure
fL P@ dZ .

What is (2

7?77

22
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A Matter of Representation

e Markov process {Z,} in S C R%
Transition kernels depend on 6 :
PQ[Zn+1 cA ‘ Zn — Z]

e Sample performance L(Z7)

° Performance measure
fL Pg dZ .

Whatis 2 7?7?77

EXAMPLE 3.
Model statement: “X is a random variable with exponential distribution
of intensity 6”.

Sufficient to describe a random variable: F(z) =1 — e %"

... the actual set {2 becomes irrelevant.
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A Matter of Representation

e Markov process {Z,} in S C R
Transition kernels depend on 6 :
Pg[Zn+1 c A ‘ Ly = Z]

e Sample performance L(7)

° Performance measure
fL P@ dZ .

Theorem 1 (Skorohod Representation ) Given a mapping X : (2 — §
on (Q,§, P), there exists X : [0,1] — S on ([0, 1], B([0,1]),P), where P is
the Lebesgue measure (or uniform distribution on [0, 1]), such that

X £ X (equality in distribution).

EXAMPLE 4. Generationofarv. X ~ F: X(U) = FYU), U ~ U0, 1].
Exponential distribution: X;(U) = —5In(1 — U), X5(U) = —3 In(U). Both
n ([0, 1], B([0,1]), P), with distribution F(z) =1 — e but X; # X, a.s.
The representation is not unique.
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A Matter of Representation

e Markov process {Z,} in S C R%. o o
Transition kernels depend on ¢ :  ® Probabilistic description n ¢

S N.2,0):0 -
e Sample performance L(Z) e Sample performance 1(0,w) =
L(Z1(0,w), Z5(0,w),...): arV.

o Performance measure
= [ L(2)Py(dz) . e Performance measure

= [ (0, w)P(dw) .
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A Matter of Representation

e Markov process {Z,} in S C R%
Transition kernels depend on ¢ : e Probabilistic description n €

Pyl Zner € A| Z, = 2] N, Z,(6) : © — R
e Sample performance L(Z) e Sample performance 1(0,w) =
° Performance measure L(Z1(0,w), Z2(0,w),...): @LV.
= [ L(2)Py(dz) . e Performance measure
= [ h(0,w)P(dw

e Use sample path approach via
the pathwise analysis to obtain:

dJ0) [ d
g = /@h(ﬁ,w)ﬁ’)(dw)

e Methods: IPA + SPA, etc.
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A Matter of Representation

e Markov process {Z,} in S C R%
Transition kernels depend on ¢ : e Probabilistic description n €

PolZn1 € Al Z, = 2] N, Z,(0) : () — R?
e Sample performance L(Z) e Sample performance 1(0,w) =
. Performance measure L(2:(0,w), Z5(0,w), . ..): arv.
= [ L(2)Py(dz) . e Performance measure
= [ h(0,w)P(dw
e Use distributional approach via e Use sample path approach via
the weak topology to obtain: the pathwise analysis to obtain:
d.J(6) d
0 /L<2)@P9<d2) d{g—(;): /d%h(e,w)P(dw)

e Methods: score function, weak e Methods: IPA + SPA, etc.
derivatives, etc.
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xn_|_1 — (XTL - An>+ —|_ Sn_|_1, {An} ~ eXp<9>7 {STL} ZZd ~Y G
What 2?

|IPA: Canonical representation, inverse function for each interarrival

1
Ay = =z In(U) {U} did ~ U0, 1
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

k k—1
Xoi1 = (X, — A" + S,41, use telescopic sum: X, 1 = Z S, — Z A

1= 1=

1 n 1 n i k 1/{:—1 |

L(Xy,. . X)) = =3 Xe= h(0)==3 |} Si+5) WU
k=1 k=1 |i=ay i—ay, |
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xoi1 = (X, — A" + S,41, use telescopic sum: X, 1 = Z S, — Z A

1= 1=

n

L(X,.. .. . X,) - %Zxk;»hw):% S‘S +€Zm
k=1

k= z o =
1 n k—ll 1 nkkl k i
= ——2 D hllU)=—3 > A
k=1 1=y k=1 i=ay

Estimation: The IPA formula for /() gives an unbiased estimator for
J'(#). Calculation in parallel as the system evolves (adapted to the
filtration).
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xoi1 = (X, — A" + S,41, use telescopic sum: X, 1 = Z S, — Z A

1= 1=

n

L(X,.. .. . X,) - %Zxk;»hw):% S‘S +€Zm
k=1

k= z o =
1 n k—ll 1 nkkl k i
= ——2 D hllU)=—3 > A
k=1 1=y k=1 i=ay

Estimation: The IPA formula for /() gives an unbiased estimator for
J'(#). Calculation in parallel as the system evolves (adapted to the
filtration).

How do we know it is unbiased?
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Pathwise Analysis: Main Results

Unbiasedness of IPA estimator:

d

pT] Qh(@,w)P(dw)
I E[h(0 + AO)] — E[h(0)]
A0 0

i/ﬁma
Q

;E[hm

AG—0

w)P(dw)

10+ A) — h(6)

0

32
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Pathwise Analysis: Main Results

Unbiasedness of IPA estimator:

d ? /
pr Qh(@,w)P(dw) :Lh(ﬁ,w)P(dw)

. Elh(0 + AB)| — E[h(0)] T [ . h(0 + AB) — h(0)
AG—0 0 Af—0 0

ExAMPLE 5. Take 2 = [0, 1], § = B(f2), P the uniform measure.
X(w) =0, and

X (w)={" ifw<1/n
() {O otherwise

Then the pathwise limit is lim,, .., X, (w) = X (w) for every w > 0, and
Plw = 0] =0, so X,, — X almost surely .

Alas! E|X,| =1foralln > 1, so E|X,] /& E[X].

33
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Pathwise Analysis: Main Results

Unbiasedness of IPA estimator:

d ? /
70 Qh(@,w)P(dw) :/Qh(ﬁ,w)]P’(dw)

. Elh(6 + AG)| — E[h(0)] 1E [ . h(6 + A0) — h(0)
AG—0 0 AH—0 v

EXAMPLE 6. Take 2 = [0, 1], § = B(£2), P the uniform measure.
X(w) =0, and

X (w)={" ifw<1/n
w) {O otherwise

Then the pathwise limit is lim,, .., X, (w) = X(w) for every w > 0, and
Plw =0] =0, so X,, — X almost surely .

Alas! E|X,| =1foralln > 1, so E|X,] /& E[X].
IPA uses the pathwise limit 7/(6,w) = limpg_o “H20=") When can the
limit and the expectation can be interchanged?

Mathematical formulation and theory
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Pathwise Analysis: Main Results

Theorem 2 (Dominated Convergence ) Let (X,,n € N), X be random
variables on (€2, §,P). If X,, — X a.s. and there is a random variable K
such that E(K) < o0 and | X,,| < K a.s. for alln € N, then

lim, .~ E[X,] = E[X].
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Pathwise Analysis: Main Results

Theorem 3 (Dominated Convergence ) Let (X,,n € N), X be random
variables on (€2, §,P). If X,, — X a.s. and there is a random variable K
such that E(K) < o0 and | X,,| < K a.s. for alln € N, then

lim, .~ E[X,] = E[X].

Definition: A random variable h(0,w) on (), §, P) is said to be
a.s. Lipschitz continuous in ¢ if there is a random variable K < oo with
E|K| < oo such that for each w,

sup  |[[2(0 + A, w) = h(0, w)|| < K(w) A,
H€O:0+AI€O
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Pathwise Analysis: Main Results

Theorem 4 (Dominated Convergence ) Let (X,,n € N), X be random
variables on (), §, P). If X,, — X a.s. and there is a random variable K
such that E(K) < o and | X,| < K a.s. foralln € N, then

lim,, .~ E[X,] = E[X].

Definition: A random variable h(6,w) on (X, §, P) is said to be
a.s. Lipschitz continuous in ¢ if there is a random variable K < oo with
E|K] < oo such that for each w,

sup  |[h(0 4+ A, w) — h(0,w)|| < K(w) Ab,
0€0:0+A0cO
e Suppose h(f) is a.s.Lipschitz continuous
e then finite difference is uniformly bounded a.s.
e Use Dominated Convergence Theorem
e The expectation of the limit is the limit of the expectation

If h(0) is a.s. Lipschitz continuous in ¢, then E|A/(6)] = J'(0).
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xpo1 = (X0 — AT+ 81, folag) = 0% {S,} iid ~ G L6

Performance measure:
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xn+1 — <Xn — An)+ + S?’H‘l? f@(ak> — Qe—@a) {Sn} itd ~ G L0

Performance measure:
n—1

J(0) = / L(al,...,an_l)H folay) day, ... da,_

:/ ah-- y An—1 H

z/ 0ty ..y anot) fylar)

= /L(al, o an_l)@ Z In fy(ay) H folag) day, ... da,—;
k=1 1=1

f1 ay) day, ... da,—

dCLl, ce da,n_l

1= lz#k
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Overview: examples

Queueing system: M /G /1: The performance is the average sojourn
time of the first n customers. The control parameter is the arrival rate ¢

Xpo1 = (X0 — AT+ 81, folag) = 0% {S,} iid ~ G L6

Result:

J(0)=E[L(Xy,...,X,)S(0: A1,..., Ay_1)]

Score Function:

S0, ai,...,a,) = d%ln <er(&z')>
d < N«
— @;[IHQ—QCM] = (5—Zai>

1=1
This is true for general performance functions but ... may not work for
some distributions.
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Overview: Examples
A Threshold example: X ~ exp(f) and L(z) = ¢i1<z + 215
e h(0) is not a.s. Lipschitz continuous, A'(8,w) = 0,w # e,
e Score function S(0,z) = 1/6 — x, use the estimator L(.X)5(d, X)

41
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Overview: Examples
A Threshold example: X ~ exp(f) and L(z) = ¢i1<z + 215
e h(0) is not a.s. Lipschitz continuous, A'(8,w) = 0,w # e,
e Score function S(0,z) = 1/6 — x, use the estimator L(.X)5(d, X)

e Representations: simplify the problem with Y ~ Bernoulli(p(9)),
p(@) = 6_9j, Y = 1{x2§:}

How do we calculate the Score Function here???
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Overview: Examples
A Threshold example: X ~ exp(0) and L(x) = ¢i1<zy + coliz>a-
e h(0) is not a.s. Lipschitz continuous, A'(8,w) = 0,w # e,
e Score function S(0,z) = 1/6 — x, use the estimator (X )5(0, X)
e Representations: simplify the problem with Y ~ Bernoulli(p(6)),
p(0) = e " Y =110
For any function L(Y') one has:

p(0)

Eg[L(Y)] = L(0)—— (D) (1 =p(1)) + L(l)mml)
The density of the Bernoulli(p(#)) w.r.t. the Bernoulli(1) is:
1—p(0) _
foly) = 119(_])?(1) ’
PO

The score function is

e Use L(X)S|0,Y(X)| as an estimator.
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Overview: Examples
A Threshold example: X = —1/0In(w),P ~ U0, 1] and
L(z) = c11y<zy + coly=5. h(0) is not a.s. Lipschitz continuous,
W0, w)=0,w#e .

44
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Overview: Examples

A Threshold example: X = —1/61n(w),P ~ UJ0, 1] and
L(z) = c1lizem + c2ly,>5. h(0) is not a.s. Lipschitz continuous,
h(0,w)=0,w+# e,

e Finite Difference: Express the derivative as:
1

/ : 1
J'(0) = Alggom 0 (0 + Ab,w) — h(0,w)] dw CRN

45
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Overview: Examples
A Threshold example: X = —1/0In(w),P ~ U]0, 1] and
L(z) = c1lpezy + c21{$>x} h(0) is not a.s. Lipschitz continuous,
W0, w)=0,w#e .
e Finite Difference: Express the derivative as:

1 1
/ T L
J(0) = %mo N [h(@ + Af,w) — h(0,w)] dw CRN

e Critical Sets: ldentify the critical observables in €2 = [0, 1] that
cause the discontinuities:

C(AG) = {w : e 0207 < () < o= 0=2071 PIC(AG)] = O(A) rare events
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Overview: Examples
A Threshold example: X = —1/0In(w),P ~ U0, 1] and
L(z) = c1lpezy + c21{$>x} h(#) is not a.s. Lipschitz continuous,
W0, w)=0,w #e .

e Finite Difference: Express the derivative as:

1 1
7(0) = Jim 57 | [0+ 20,0) = h,w))ds CRN

e Critical Sets: l|dentify the critical observables in ) = |0, 1] that
cause the discontinuities:

C(AG) = {w: e WHANT ) < e~ 0=207Y PIC(A)] = O(AH) rare events

e Conditioning: Use the law of tot al probability:
hag(0, . P(C(Al
e M08 “picqaon)| + Emats.wciao) (ZEE)

2A0 2A0
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Overview: Examples
A Threshold example: X = —1/61n(w),P ~ UJ0, 1] and
L(z) = cilypem + 021{x>x} h(#) is not a.s. Lipschitz continuous,
h(0,w)=0,w+# e,
e Finite Difference: Express the derivative as:
1 1

J(6) = Alémo 27 /. h(0 + A, w) — h(0,w)] dw CRN

e Critical Sets: ldentify the critical observables in €2 = [0, 1] that
cause the discontinuities:

C(AG) = {w : e 02T ) < o= 0=2DT1 PIC(A)] = O(AD) rare events

e Conditioning: Use the law of total probability:

hanl.) P(C(A0)
e M0 “picqaon)| + Emsis.wciao) (FEE)

e Difference process and critical rates: Evaluate the limit:

J'(0) = “IPA” + (¢ — co)ze . | Known as SPA estimation
Zero variance!l!
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Overview: Examples
A Threshold example: X = —1/0In(w),P ~ U0, 1] and
L(x) = C1lipez + coli>z)-
e Representations: simplify the problem with Y ~ Bernoulli(p(6)),
p(0) =e Y =1,
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Overview: Examples
A Threshold example: X = —1/0In(w),P ~ U0, 1] and
L(x) = C1lipez + coli>z)-
e Representations: simplify the problem with Y ~ Bernoulli(p(9)),
p(0) =e Y =1,
e Derivative of the measure: A direct dsitributional approach

d%E@[L(y)] - d%[L(O) (1 —p(0)) + L(1) p(6)]
= —L(0)p'(0) + L(1)p'(0) = ze ""(L(0) — L(1))
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A Threshold example:

Overview: Examples
X =-1/0In(w),P ~ U|0, 1] and

L(ZU) = Cl].{x<j} + CQl{xzf}.

e Representations: simplify the problem with Y ~ Bernoulli(p(6)),
p(@) = 6_03_3, Y = 1{56253‘}

e Derivative of the measure: A direct dsitributional approach

d
@EQ[LO/)] —

d%[L(o) (1 —p(0)) + L(1) p(0)]

—L(0)p'(0) + L(1)p'(0) = ze™"(L(0) — L(1))

e Expectations: Interpret in terms of expectations of new random

variables

CEJL(Y)] = 2e PEL(Y) - L), YT ~8.Y ~ by

51

Recovers SPA estimator : zero variance

e Estimation: Usually called weak derivative estimator.
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Summary

e Pathwise analysis:

7(0) = / B0, ) P(dw)

Lipschitz continuity or conditioning on discontinuities: careful
construction of perturbations of finite difference to establish
unbiasedness

e Distributional analysis:

7(0) = [ L:) 2Puldz)

Re-interpretation of the derivatives of measures as expectations.

e Score function: re-writes in terms of the original distribution,

e Weak derivatives: use other distributions for the derivative.
Dual spaces and weak topology: true for all bounded and
continuous sample performance. Extensions
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