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Main Results: Pathwise Analysis

Definition: A random variable h(0,w) on (2, §,P) is said to be

a.s. Lipschitz continuous in ¢ if there is a random variable K < oo with
E|K| < oo such that for each w,

sup  |[[2(0 + A, w) = h(0, w)|| < K(w) A,
HEO:0+AIEO

If () is a.s. Lipschitz continuous in ¢, then E|A/(6)] = J'(9).

e Filtered Monte Carlo: for: < n, J(0) = E[L(Zy, ..., Z,)|F:] isarw.
which is measurable w.r.t. §,. Call it h;(6,w). Then J(0) = Elh;],i <n

J(0) = E [ /Q hi(6, w) P(dw)]
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Main Results: Pathwise Analysis

Definition: A random variable h(0,w) on (2, F,P) is said to be

a.s. Lipschitz continuous in 0 if there is a random variable KX < oo with
E| K| < oo such that for each w,

sup  |[[2(0 + A, w) = h(0, w)|| < K(w) AD,
0€O:0+AI€O

If () is a.s. Lipschitz continuous in ¢, then E[A/(60)] = J'(9).

e Filtered Monte Carlo: for: < n, J(0) = E[L(Zy, ..., Z,)|F:] isarw.
which is measurable w.r.t. §,. Call it h;(6,w). Then J(0) = E|h;],i < n

J(0) = E [ /Q hi6, w) P(dw)]

e Smoothing: conditioning may integrate discontinuities: h;(0) a.s.
Lipschitz continuous.

e Representations: use alternative representations of L.(7) as a
function A'(w) (problem dependent: case by case).
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Weak Differentiation

Definition: If (X,,,n € N) is a sequence of random variables on (), §, P),
and X is §-measurable,

e X, converges to X almost surely , denoted by X,, — X a.s., if
P{w : lim, o Xy (w) = X(w)} = 1.

e X, converges to X weakly , denoted by X, == X , if for every
bounded and continuous function g : S — R, E|g(X,,)] — E[g(X)].
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Weak Differentiation

Definition: If (X,,,n € N) is a sequence of random variables on (), §, P),
and X is §-measurable,

e X, converges to X almost surely , denoted by X,, — X a.s., if
P{w : lim, o Xy (w) = X(w)} = 1.

e X, converges to X weakly , denoted by X, == X , if for every
bounded and continuous function g : S — R, E|g(X,,)] — E[g(X)].

Definition: Let uy be a family of probability measures defined on
(.S, B(S)). The probability measure 1 is said to be weakly differentiable
if there exists a measure iy, : B(S) — R such that for every g € Cy(.5)

. 1 /
Jm ( [ 96s) o sotds) = [ 9(s ue(d8>) = [ atsluitas)
(and then ZE[g] = [ g(s)up(ds)).

REMARK: Note that 1p.a9(-) — pe(+) is a signed measure. The weak limit
(if it exists) is also a finite signed measure with total mass zero.



Felisa J. \&zquez-Abad

Examples of weak differentiation

EXAMPLE 1. X ~ exp(#). Score function :

Vg € Cb(R)d% / g(z)0e " d — / o(z) G .,
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Examples of weak differentiation

EXAMPLE 2. X ~ exp(#). Score function :

Vg € C’b(R)die/g(az)@egx dr = /g(az) <% — :E) fe % dz

up(dx) = (1/ — x)fe " dz, not a density. |
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Examples of weak differentiation

EXAMPLE 3. X ~ exp(#). Score function :

Vg € C’b(R)die/g(az)@e% dr = /g(az) <% — x) fe % dz

pp(dz) = (1/6 — 2)0e " dx, not a density. ‘

EXAMPLE 4. X ~ U|0, 6] then

0
Vg Cil0.6) 3 [ gole)ds = —5 [ gla)da+ 5ol6)

and 1/(6)(A) = 1/6[1{gca) — o A)).
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Examples of weak differentiation

EXAMPLE 5. X ~ exp(#). Score function :

Vg € Cb(R)dile/g(a:)@e_ex dr = /g(aﬁ) (é - :13) fe 0 dz

1y(dz) = (1/6 — x)0e”"dx, not a density.

EXAMPLE 6. X ~ U|0, 6] then

d (71 1 1

Vg 0.8 35 [ gol@lds = —; [ o) de+ 900

_ % [ /R 659(2)g(2) dx—% /0 ’ o(@) da:]

and p/(0)(A) = 1/0[1peay — po(A)].

The weak derivative 1, is the difference of two measures:
a mass at 6 and the original measure U|0, 6].
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Weak Differentiation: Absolute Continuity
Definition: Consider the space (S, B(.5)).
e A measure y is said to be absolutely continuous w.r.t. a measure v,

denoted by 1y << v, if forevery B C B(S) v(B) = 0 implies
u(B) = 0.

e A family of measures 1y, 0 € © is said to be dominated by v if
1y << v, forall 6 € O.

e Two measures v and p are orthogonal , denoted . | v if there is
AcC Swithv(A)=0and u(A°) = 0.
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Weak Differentiation: Absolute Continuity
Definition: Consider the space (S, B(.5)).
e A measure 1 is said to be absolutely continuous w.r.t. a measure v,
denoted by 1y << v, if for every B C B(S) v(B) = 0 implies
u(B) = 0.
e A family of measures 1y, 0 € © is said to be dominated by v if
1y << v, forall 0 € O.

e Two measures v and p are orthogonal , denoted i, | v if there is
AcC Swithv(A)=0and u(A°) = 0.
Theorem 1 (Radon-Nikodym ) Two o-finite measures on B(.S) satisfy
1 << v if and only if there exists a nonnegative measurable function on
(.S, B(S)) denoted by [fl—ﬂ . S — R such that for every B € B(.5)

uB) = [ 1% s vias)

The function [2—5} is called the Radon-Nikodym derivative and

sometimes it is also called the “v-density” of 1.
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Weak Differentiation: Absolute Continuity
Dominated family 1y << v of probability measures , then:

uB) = [ || svids) = [ oot

e Likelihood Ratio: Underlying space (€2, %), X(0) ~ ygand Y ~ v.
Define the nonnegative o(Y )-measurable random variable:

L(0,w) = fo(Y (w))
then for all g € C,(S) Elg(Y')L(0,Y )] = Elg(X (0)] . Change of measure.



Felisa J. \&zquez-Abad 13

Weak Differentiation: Absolute Continuity
Dominated family 1y << v of probability measures , then:

uB) = [ || svids) = [ oot

e Likelihood Ratio: Underlying space (€2, %), X(0) ~ ygand Y ~ v.
Define the nonnegative o(Y )-measurable random variable:

L(0,w) = fo(Y (w))
then for all g € C,(5) Elg(Y)L(0,Y )] = Elg(X (0)] . Change of measure.

e Score function method:

5 [atomtas) = [ gt vids) = [ ot (d_jfﬁ())) fals)(ds)
d

= [ 9to) 3 lhs) faspwids) = [ 9()S(0.5) (s
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Score Function for DES

{Z,(0)} a homogeneous Markov process in a general state space
S c R?. Transitions dominated by lebesgue measure (densities):

Vze S, Pyz,A)=P(Z,,1 € AlZ, =2) ~ fo(z,7)
Chain rule for differentiation =

T
J(0) = % g(s1,...,s7) H Py(ds;, s;—1)
o
_ z;/g(sl,...,ST%m(fe(sj,sj1)) <
]— .
H Py(ds;, si—1)Py(dsj, sj—1) H Py(ds;, si—1) ,
i=j+1 i=1

for any g € C,(S). Gradient estimators:

LeL,..... 20)) - > [L<zl,... zr) S (fuz, >>]
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Weak Differentiation

EXAMPLE 7. X ~ U|0, 0] then

e \Weak derivative:
d 71 1 1

Vg € Cy([0,0]) @/0 59(@ dvr = —— [ g(z)dx + —g

and /1/(0)(A) = 1/0[1;peay — po(A)).
e Score function: write down the (usual) density :

folz) =

% r <46
0 otherwise

What is 4 In fy(1)??2?2?

Score funtion is not applicable: support depends on # = unbounded

derivatives of densities.
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Weak Derivatives

Theorem 2 (Hahn-Jordan Decomposition ) For any finite signed
measure v on (5, B(S)) there exist disjoint sets S*, S~ such that
St U S~ =5, with the property that

AcCcST=v(A) >0 and AcCS =v4) <0
Definition: The positive and negative parts of v are:

v, (B) = 19(BNS*T) VB C B(9)
sothat v(B)=v"(B)+v (B).

16
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Weak Derivatives

Theorem 3 (Hahn-Jordan Decomposition ) For any finite signed
measure v on (S, B(S)) there exist disjoint sets S*, S~ such that
STUS™ =5, with the property that

AcST=v(4A)>0 and ACc S =v(A)<0
Definition: The positive and negative parts of v are:
v, (B) = (BN S*T) VB C B(9)

sothat v(B) =v"(B)+v (B).

e In particular, if uy is weakly differentiable then ,(S) = 0,

e Hahn-dordan: ¢y = (1), (S) = —(¢'), (S),

e Normalising: Let u;(B) = (i), (B)/cy VB C B(S)

e Then p; are probability measures

Using these probabilities, the derivative of an expectation
can be expressed as the difference of two expectations.
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Weak Derivatives

Definition: Let uy be a family of measures on (S, B(.5)). A triple
(co. g » 14y ) coONsisting of

e a positive constant ¢y,
e two probability measures ;i
and is called a weak derivative of 1y if
e 119 is weakly differentiable at each 6, and
e Forall g € Cy(S5)

[ atsritas) = ( [ stsiuitas) - [ g<s>u;<ds>)

If the left-hand side equals zero for all g, we define the weak derivative
of ug as (1, ug, 114).
EXAMPLE 8. For X ~ U|0,6], ¢y = 3, 1, is the mass density at 6, and
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Overview: examples

EXAMPLE 9. X ~ exp(#), domination v ~ lebesgue measure.
fo(x) = e 7.

dilefg(a:) — e " —Pre ™ (> 0iff x> 1/0)
e Use Hahn-Jordan:
1/6
Cyp = / (1 —0x)e " do = ef
0

fo(x) = (1- 9$)€1_9$1{0<x§1/9}
fo(x) = —(1—0x)e" "L
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Overview: examples

ExXAMPLE 10. X ~ exp(f#), domination v ~ lebesgue measure.
fo(x) = e 7.

dilefg(a:) — e " —Pre ™ (> 0iff x> 1/0)
e Use Hahn-Jordan:
1/6
Cyp = / (1 —0x)e " do = ef
0

fo(x) = (1- 9$)€1_9$1{0<x§1/9}
fo(x) = —(1—0x)e" "L

e Simulation: Generate two random variables, X* with respective
densities f,°(-) and build the estimator cy[L(X ) — L(X )]
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Overview: examples
EXAMPLE 11. X ~ exp(f), domination v ~ lebesgue measure.
fo(x) = e 7.
d .
@fg(a:) — e " —Pre ™ (> 0iff x> 1/0)
e Use Hahn-Jordan:
1/6
Cyp = / (1 —0x)e " do = ef
0
foif (x) = (1= 0x)e" " Lpcuzryo
fo (x) = =(1 = 0z)e' " 1pm )

e Simulation: Generate two random variables, X* with respective
densities f,°(-) and build the estimator cy[L(X ) — L(X )]

e Score function: Uses estimator L(X)(1/0 — X),
e |PA: Uses estimator h/'(0)(X/0) (chain rule), if unbiased.



