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Main Results: Pathwise Analysis
De"nition: A random variable h(θ, ω) on (Ω,F,P) is said to be
a.s. Lipschitz continuous in θ if there is a random variable K <∞ with
E[K] <∞ such that for each ω,

sup
θ∈Θ:θ+∆θ∈Θ

‖h(θ + ∆θ, ω)− h(θ, ω)‖ ≤ K(ω) ∆θ,

If h(θ) is a.s. Lipschitz continuous in θ, then E[h′(θ)] = J ′(θ).

• Filtered Monte Carlo: for i ≤ n, J(θ) = E[L(Z1, . . . , Zn)|Fi] is a r.v.
which is measurable w.r.t. Fi. Call it hi(θ, ω). Then J(θ) = E[hi], i ≤ n

J(θ) = E

[∫
Ω

hi(θ, ω)P(dω)

]
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a.s. Lipschitz continuous in θ if there is a random variable K <∞ with
E[K] <∞ such that for each ω,

sup
θ∈Θ:θ+∆θ∈Θ
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• Smoothing: conditioning may integrate discontinuities: hi(θ) a.s.
Lipschitz continuous.
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Main Results: Pathwise Analysis
De"nition: A random variable h(θ, ω) on (Ω,F,P) is said to be
a.s. Lipschitz continuous in θ if there is a random variable K <∞ with
E[K] <∞ such that for each ω,

sup
θ∈Θ:θ+∆θ∈Θ

‖h(θ + ∆θ, ω)− h(θ, ω)‖ ≤ K(ω) ∆θ,

If h(θ) is a.s. Lipschitz continuous in θ, then E[h′(θ)] = J ′(θ).

• Filtered Monte Carlo: for i ≤ n, J(θ) = E[L(Z1, . . . , Zn)|Fi] is a r.v.
which is measurable w.r.t. Fi. Call it hi(θ, ω). Then J(θ) = E[hi], i ≤ n

J(θ) = E

[∫
Ω

hi(θ, ω)P(dω)

]
• Smoothing: conditioning may integrate discontinuities: hi(θ) a.s.
Lipschitz continuous.

• Representations: use alternative representations of L(Z) as a
function h′(θω) (problem dependent: case by case).
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Weak Differentiation

De"nition: If (Xn, n ∈ N) is a sequence of random variables on (Ω,F,P),
and X is F-measurable,

• Xn converges to X almost surely , denoted by Xn → X a.s. , if
P{ω : limn→∞Xn(ω) = X(ω)} = 1.

• Xn converges to X weakly , denoted by Xn
L

=⇒X , if for every
bounded and continuous function g : S → R, E[g(Xn)]→ E[g(X)].
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Weak Differentiation

De"nition: If (Xn, n ∈ N) is a sequence of random variables on (Ω,F,P),
and X is F-measurable,

• Xn converges to X almost surely , denoted by Xn → X a.s. , if
P{ω : limn→∞Xn(ω) = X(ω)} = 1.

• Xn converges to X weakly , denoted by Xn
L

=⇒X , if for every
bounded and continuous function g : S → R, E[g(Xn)]→ E[g(X)].

De"nition: Let µθ be a family of probability measures de"ned on
(S,B(S)). The probability measure µθ is said to be weakly differentiable
if there exists a measure µ′θ : B(S)→ R such that for every g ∈ Cb(S)

lim
∆θ→0

1

∆θ

(∫
S

g(s)µθ+∆θ(ds)−
∫
S

g(s)µθ(ds)

)
=

∫
S

g(s)µ′θ(ds).

(and then ∂
∂θE[g] =

∫
g(s)µ′θ(ds)).

REMARK: Note that µθ+∆θ(·)− µθ(·) is a signed measure. The weak limit
(if it exists) is also a "nite signed measure with total mass zero.
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Examples of weak differentiation

EXAMPLE 1. X ∼ exp(θ). Score function :

∀g ∈ Cb(R)
d

dθ

∫
g(x)θe−θx dx =

∫
g(x)

(
1

θ
− x
)
θe−θx dx

÷×÷×÷×
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Examples of weak differentiation

EXAMPLE 2. X ∼ exp(θ). Score function :

∀g ∈ Cb(R)
d

dθ

∫
g(x)θe−θx dx =

∫
g(x)

(
1

θ
− x
)
θe−θx dx

µ′θ(dx) = (1/θ − x)θe−θxdx, not a density.

÷×÷×÷×
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Examples of weak differentiation

EXAMPLE 3. X ∼ exp(θ). Score function :

∀g ∈ Cb(R)
d

dθ

∫
g(x)θe−θx dx =

∫
g(x)

(
1

θ
− x
)
θe−θx dx

µ′θ(dx) = (1/θ − x)θe−θxdx, not a density.

÷×÷×÷×
EXAMPLE 4. X ∼ U [0, θ] then

∀g ∈ Cb([0, θ])
d

dθ

∫ θ

0

1

θ
g(x) dx = − 1

θ2

∫
g(x) dx +

1

θ
g(θ)

=
1

θ

[∫
R
δθ(x)g(x) dx− 1

θ

∫ θ

0

g(x) dx

]
and µ′(θ)(A) = 1/θ[1{θ∈A} − µθ(A)].

÷×÷×÷×
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Examples of weak differentiation

EXAMPLE 5. X ∼ exp(θ). Score function :

∀g ∈ Cb(R)
d

dθ

∫
g(x)θe−θx dx =

∫
g(x)

(
1

θ
− x
)
θe−θx dx

µ′θ(dx) = (1/θ − x)θe−θxdx, not a density.
÷×÷×÷×

EXAMPLE 6. X ∼ U [0, θ] then

∀g ∈ Cb([0, θ])
d

dθ

∫ θ

0

1

θ
g(x) dx = − 1

θ2

∫
g(x) dx +

1

θ
g(θ)

=
1

θ

[∫
R
δθ(x)g(x) dx− 1

θ

∫ θ

0

g(x) dx

]
and µ′(θ)(A) = 1/θ[1{θ∈A} − µθ(A)].

The weak derivative µ′θ is the difference of two measures:
a mass at θ and the original measure U [0, θ].

÷×÷×÷×
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Weak Differentiation: Absolute Continuity

De"nition: Consider the space (S,B(S)).

• A measure µ is said to be absolutely continuous w.r.t. a measure ν,
denoted by µθ << ν, if for every B ⊂ B(S) ν(B) = 0 implies
µ(B) = 0.

• A family of measures µθ, θ ∈ Θ is said to be dominated by ν if
µθ << ν, for all θ ∈ Θ.

• Two measures ν and µ are orthogonal , denoted µ ⊥ ν if there is
A ⊂ S with ν(A) = 0 and µ(Ac) = 0.
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Weak Differentiation: Absolute Continuity
De"nition: Consider the space (S,B(S)).
• A measure µ is said to be absolutely continuous w.r.t. a measure ν,
denoted by µθ << ν, if for every B ⊂ B(S) ν(B) = 0 implies
µ(B) = 0.

• A family of measures µθ, θ ∈ Θ is said to be dominated by ν if
µθ << ν, for all θ ∈ Θ.

• Two measures ν and µ are orthogonal , denoted µ ⊥ ν if there is
A ⊂ S with ν(A) = 0 and µ(Ac) = 0.

Theorem 1 (Radon-Nikodym ) Two σ-"nite measures on B(S) satisfy
µ << ν if and only if there exists a nonnegative measurable function on
(S,B(S)) denoted by

[
dµ
dν

]
: S → R such that for every B ∈ B(S)

µ(B) =

∫
B

[
dµ

dν

]
(s) ν(ds).

The function
[
dµ
dν

]
is called the Radon-Nikodym derivative and

sometimes it is also called the �ν-density� of µ.
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Weak Differentiation: Absolute Continuity

Dominated family µθ << ν of probability measures , then:

µ(B) =

∫
B

[
dµ

dν

]
(s) ν(ds) =

∫
B

fθ(s) ν(ds).

• Likelihood Ratio: Underlying space (Ω,F), X(θ) ∼ µθ and Y ∼ ν.
De"ne the nonnegative σ(Y )-measurable random variable:

L(θ, ω) = fθ(Y (ω))

then for all g ∈ Cb(S) E[g(Y )L(θ, Y )] = E[g(X(θ)] . Change of measure.
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Weak Differentiation: Absolute Continuity

Dominated family µθ << ν of probability measures , then:

µ(B) =

∫
B

[
dµ

dν

]
(s) ν(ds) =

∫
B

fθ(s) ν(ds).

• Likelihood Ratio: Underlying space (Ω,F), X(θ) ∼ µθ and Y ∼ ν.
De"ne the nonnegative σ(Y )-measurable random variable:

L(θ, ω) = fθ(Y (ω))

then for all g ∈ Cb(S) E[g(Y )L(θ, Y )] = E[g(X(θ)] . Change of measure.

• Score function method:
d

dθ

∫
g(s)µθ(ds) =

∫
g(s)

d

dθ
fθ(s) ν(ds) =

∫
g(s)

(
d
dθfθ(s)

fθ(s)

)
fθ(s)ν(ds)

=

∫
g(s)

d

dθ
ln[fθ(s)] fθ(s)ν(ds) =

∫
g(s)S(θ, s)µθ(ds)



Felisa J. V́azquez-Abad 14

Score Function for DES
{Zn(θ)} a homogeneous Markov process in a general state space
S ⊂ Rd. Transitions dominated by lebesgue measure (densities):

∀z ∈ S, Pθ(z, A) = P(Zn+1 ∈ A|Zn = z) ∼ fθ(z, x)

Chain rule for differentiation⇒

J ′(θ) =
d

dθ

∫
g(s1, . . . , sT )

T∏
i=1

Pθ(dsi, si−1)

=

T∑
j=1

∫
g(s1, . . . , sT )

d

dθ
ln(fθ(sj, sj−1)) ×

T∏
i=j+1

Pθ(dsi, si−1)Pθ(dsj, sj−1)

j−1∏
i=1

Pθ(dsi, si−1) ,

for any g ∈ Cb(S). Gradient estimators:

d

dθ
E[L(Z1, . . . , ZT )] =

n∑
j=1

E

[
L(Z1, . . . , ZT )

d

dθ
ln (fθ(Zj, Zj−1))

]
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Weak Differentiation

EXAMPLE 7. X ∼ U [0, θ] then

• Weak derivative:

∀g ∈ Cb([0, θ])
d

dθ

∫ θ

0

1

θ
g(x) dx = − 1

θ2

∫
g(x) dx +

1

θ
g(θ)

=
1

θ

[∫
R
δθ(x)g(x) dx− 1

θ

∫ θ

0

g(x) dx

]
and µ′(θ)(A) = 1/θ[1{θ∈A} − µθ(A)].

• Score function: write down the (usual) density :

fθ(x) =

{
1
θ x ≤ θ
0 otherwise

What is d
dθ ln fθ(x)????

Score funtion is not applicable: support depends on θ ⇒ unbounded
derivatives of densities.

÷×÷×÷×
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Weak Derivatives

Theorem 2 (Hahn-Jordan Decomposition ) For any "nite signed
measure ν on (S,B(S)) there exist disjoint sets S+, S− such that
S+ ∪ S− = S, with the property that

A ⊂ S+ ⇒ ν(A) > 0 and A ⊂ S− ⇒ ν(A) < 0

De"nition: The positive and negative parts of ν are:

ν±θ (B) = νθ(B ∩ S±) ∀B ⊂ B(S)

so that ν(B) = ν+(B) + ν−(B).



Felisa J. V́azquez-Abad 17

Weak Derivatives

Theorem 3 (Hahn-Jordan Decomposition ) For any "nite signed
measure ν on (S,B(S)) there exist disjoint sets S+, S− such that
S+ ∪ S− = S, with the property that

A ⊂ S+ ⇒ ν(A) > 0 and A ⊂ S− ⇒ ν(A) < 0

De"nition: The positive and negative parts of ν are:

ν±θ (B) = νθ(B ∩ S±) ∀B ⊂ B(S)

so that ν(B) = ν+(B) + ν−(B).

• In particular, if µθ is weakly differentiable then µ′θ(S) = 0,

• Hahn-Jordan: cθ = (µ′)+
θ (S) = −(µ′)−θ (S),

• Normalising: Let µ±θ (B) = (µ′)±θ (B)/cθ ∀B ⊂ B(S)

• Then µ±θ are probability measures

Using these probabilities, the derivative of an expectation
can be expressed as the difference of two expectations.
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Weak Derivatives

De"nition: Let µθ be a family of measures on (S,B(S)). A triple
(cθ, µ

+
θ , µ

−
θ ) consisting of

• a positive constant cθ,
• two probability measures µ±θ
and is called a weak derivative of µθ if

• µθ is weakly differentiable at each θ, and

• For all g ∈ Cb(S)∫
S

g(s)µ′θ(ds) = cθ

(∫
S

g(s)µ+
θ (ds)−

∫
S

g(s)µ−θ (ds)

)
If the left�hand side equals zero for all g, we de"ne the weak derivative
of µθ as (1, µθ, µθ).

EXAMPLE 8. For X ∼ U [0, θ], cθ = 1
θ, µ

+
θ is the mass density at θ, and

µ−θ = µθ ∼ U [0, θ].
÷×÷×÷×
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Overview: examples

EXAMPLE 9. X ∼ exp(θ), domination ν ∼ lebesgue measure.
fθ(x) = θe−θx.

d

dθ
fθ(x) = e−θx − θxe−θx (> 0 iff x > 1/θ)

• Use Hahn-Jordan:

cθ =

∫ 1/θ

0

(1− θx)e−θx dx = eθ

f+
θ (x) = (1− θx)e1−θx1{0<x≤1/θ}
f−θ (x) = −(1− θx)e1−θx1{x>1/θ}

÷×÷×÷×
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Overview: examples

EXAMPLE 10. X ∼ exp(θ), domination ν ∼ lebesgue measure.
fθ(x) = θe−θx.

d

dθ
fθ(x) = e−θx − θxe−θx (> 0 iff x > 1/θ)

• Use Hahn-Jordan:

cθ =

∫ 1/θ

0

(1− θx)e−θx dx = eθ

f+
θ (x) = (1− θx)e1−θx1{0<x≤1/θ}
f−θ (x) = −(1− θx)e1−θx1{x>1/θ}

• Simulation: Generate two random variables, X± with respective
densities f±θ (·) and build the estimator cθ[L(X+)− L(X−)]

÷×÷×÷×
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Overview: examples

EXAMPLE 11. X ∼ exp(θ), domination ν ∼ lebesgue measure.
fθ(x) = θe−θx.

d

dθ
fθ(x) = e−θx − θxe−θx (> 0 iff x > 1/θ)

• Use Hahn-Jordan:

cθ =

∫ 1/θ

0

(1− θx)e−θx dx = eθ

f+
θ (x) = (1− θx)e1−θx1{0<x≤1/θ}
f−θ (x) = −(1− θx)e1−θx1{x>1/θ}

• Simulation: Generate two random variables, X± with respective
densities f±θ (·) and build the estimator cθ[L(X+)− L(X−)]

• Score function: Uses estimator L(X)(1/θ −X),

• IPA: Uses estimator h′(θ)(X/θ) (chain rule), if unbiased.

÷×÷×÷×


