Gradient Estimation Methods for Discrete Event Systems Performance Measures Part II

Felisa J. Vázquez-Abad

Département d'informatique et recherche oprérationnelle Université de Montréal, Québec, CANADA couriel: vazquez@IRO.UMontreal.CA

Department of Electronic and Electrical Engineering
The University of Melbourne

Main Results: Pathwise Analysis

Definition: A random variable $h(\theta,\omega)$ on $(\Omega,\mathfrak{F},\mathbb{P})$ is said to be a.s. Lipschitz continuous in θ if there is a random variable $K<\infty$ with $\mathsf{E}[K]<\infty$ such that for each ω ,

$$\sup_{\theta \in \Theta: \theta + \Delta \theta \in \Theta} \|h(\theta + \Delta \theta, \omega) - h(\theta, \omega)\| \le K(\omega) \, \Delta \theta,$$

If $h(\theta)$ is a.s. Lipschitz continuous in θ , then $E[h'(\theta)] = J'(\theta)$.

• Filtered Monte Carlo: for $i \leq n$, $J(\theta) = \mathsf{E}[L(Z_1,\ldots,Z_n)|\mathfrak{F}_i]$ is a $\mathit{r.v.}$ which is measurable w.r.t. \mathfrak{F}_i . Call it $h_i(\theta,\omega)$. Then $J(\theta) = \mathsf{E}[h_i], i \leq n$

$$J(\theta) = \mathsf{E}\left[\int_{\Omega} h_i(\theta,\omega) \, \mathbb{P}(d\omega)\right]$$

Main Results: Pathwise Analysis

Definition: A random variable $h(\theta,\omega)$ on $(\Omega,\mathfrak{F},\mathbb{P})$ is said to be a.s. Lipschitz continuous in θ if there is a random variable $K<\infty$ with $\mathsf{E}[K]<\infty$ such that for each ω ,

$$\sup_{\theta \in \Theta: \theta + \Delta \theta \in \Theta} \|h(\theta + \Delta \theta, \omega) - h(\theta, \omega)\| \le K(\omega) \, \Delta \theta,$$

If $h(\theta)$ is a.s. Lipschitz continuous in θ , then $E[h'(\theta)] = J'(\theta)$.

• Filtered Monte Carlo: for $i \leq n$, $J(\theta) = \mathsf{E}[L(Z_1,\ldots,Z_n)|\mathfrak{F}_i]$ is a $\mathit{r.v.}$ which is measurable w.r.t. \mathfrak{F}_i . Call it $h_i(\theta,\omega)$. Then $J(\theta) = \mathsf{E}[h_i], i \leq n$

$$J(\theta) = \mathsf{E}\left[\int_{\Omega} h_i(\theta,\omega) \, \mathbb{P}(d\omega)\right]$$

• Smoothing: conditioning may integrate discontinuities: $h_i(\theta)$ a.s. Lipschitz continuous.

Main Results: Pathwise Analysis

Definition: A random variable $h(\theta,\omega)$ on $(\Omega,\mathfrak{F},\mathbb{P})$ is said to be a.s. Lipschitz continuous in θ if there is a random variable $K<\infty$ with $\mathsf{E}[K]<\infty$ such that for each ω ,

$$\sup_{\theta \in \Theta: \theta + \Delta \theta \in \Theta} \|h(\theta + \Delta \theta, \omega) - h(\theta, \omega)\| \le K(\omega) \Delta \theta,$$

If $h(\theta)$ is a.s. Lipschitz continuous in θ , then $E[h'(\theta)] = J'(\theta)$.

• Filtered Monte Carlo: for $i \le n$, $J(\theta) = \mathsf{E}[L(Z_1,\ldots,Z_n)|\mathfrak{F}_i]$ is a $\mathit{r.v.}$ which is measurable w.r.t. \mathfrak{F}_i . Call it $h_i(\theta,\omega)$. Then $J(\theta) = \mathsf{E}[h_i], i \le n$

$$J(\theta) = \mathsf{E}\left[\int_{\Omega} h_i(\theta,\omega) \, \mathbb{P}(d\omega)\right]$$

- Smoothing: conditioning may integrate discontinuities: $h_i(\theta)$ a.s. Lipschitz continuous.
- Representations: use alternative representations of L(Z) as a function $h'(\theta\omega)$ (problem dependent: case by case).

Weak Differentiation

Definition: If $(X_n, n \in \mathbb{N})$ is a sequence of random variables on $(\Omega, \mathfrak{F}, \mathbb{P})$, and X is \mathfrak{F} -measurable,

- X_n converges to X almost surely , denoted by $X_n \to X$ a.s. , if $\mathbb{P}\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = 1$.
- X_n converges to X weakly, denoted by $X_n \stackrel{\mathcal{L}}{\Longrightarrow} X$, if for every bounded and continuous function $g: S \to \mathbb{R}$, $\mathsf{E}[g(X_n)] \to \mathsf{E}[g(X)]$.

Weak Differentiation

Definition: If $(X_n, n \in \mathbb{N})$ is a sequence of random variables on $(\Omega, \mathfrak{F}, \mathbb{P})$, and X is \mathfrak{F} -measurable,

- X_n converges to X almost surely , denoted by $X_n \to X$ a.s. , if $\mathbb{P}\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = 1$.
- X_n converges to X weakly, denoted by $X_n \stackrel{\mathcal{L}}{\Longrightarrow} X$, if for every bounded and continuous function $g: S \to \mathbb{R}$, $\mathsf{E}[g(X_n)] \to \mathsf{E}[g(X)]$.

Definition: Let μ_{θ} be a family of probability measures defined on $(S, \mathcal{B}(S))$. The probability measure μ_{θ} is said to be weakly differentiable if there exists a measure $\mu'_{\theta} : \mathcal{B}(S) \to \mathbb{R}$ such that for every $g \in C_b(S)$

$$\lim_{\Delta\theta\to 0} \frac{1}{\Delta\theta} \left(\int_S g(s) \, \mu_{\theta+\Delta\theta}(ds) - \int_S g(s) \, \mu_{\theta}(ds) \right) = \int_S g(s) \mu_{\theta}'(ds).$$

(and then $\frac{\partial}{\partial \theta} \mathsf{E}[g] = \int g(s) \mu_{\theta}'(ds)$).

REMARK: Note that $\mu_{\theta+\Delta\theta}(\cdot) - \mu_{\theta}(\cdot)$ is a signed measure. The weak limit (if it exists) is also a finite signed measure with total mass zero.

Examples of weak differentiation

EXAMPLE 1. $X \sim \exp(\theta)$. Score function :

$$\forall g \in C_b(\mathbb{R}) \frac{d}{d\theta} \int g(x) \theta e^{-\theta x} dx = \int g(x) \left(\frac{1}{\theta} - x\right) \theta e^{-\theta x} dx$$

Examples of weak differentiation

EXAMPLE 2. $X \sim \exp(\theta)$. Score function :

$$\forall g \in C_b(\mathbb{R}) \frac{d}{d\theta} \int g(x) \theta e^{-\theta x} dx = \int g(x) \left(\frac{1}{\theta} - x\right) \theta e^{-\theta x} dx$$

$$\mu'_{\theta}(dx) = (1/\theta - x)\theta e^{-\theta x} dx,$$
 not a density.

Examples of weak differentiation

EXAMPLE 3. $X \sim \exp(\theta)$. Score function :

$$\forall g \in C_b(\mathbb{R}) \frac{d}{d\theta} \int g(x) \theta e^{-\theta x} dx = \int g(x) \left(\frac{1}{\theta} - x\right) \theta e^{-\theta x} dx$$

$$\mu'_{\theta}(dx) = (1/\theta - x)\theta e^{-\theta x} dx$$
, not a density.

Example 4. $X \sim U[0, \theta]$ then

$$\forall g \in C_b([0, \theta]) \quad \frac{d}{d\theta} \int_0^\theta \frac{1}{\theta} g(x) \, dx = -\frac{1}{\theta^2} \int g(x) \, dx + \frac{1}{\theta} g(\theta)$$
$$= \frac{1}{\theta} \left[\int_{\mathbb{R}} \delta_{\theta}(x) g(x) \, dx - \frac{1}{\theta} \int_0^\theta g(x) \, dx \right]$$

and
$$\mu'(\theta)(A) = 1/\theta[\mathbf{1}_{\{\theta \in A\}} - \mu_{\theta}(A)].$$

Examples of weak differentiation

EXAMPLE 5. $X \sim \exp(\theta)$. Score function :

$$\forall g \in C_b(\mathbb{R}) \frac{d}{d\theta} \int g(x) \theta e^{-\theta x} dx = \int g(x) \left(\frac{1}{\theta} - x\right) \theta e^{-\theta x} dx$$

$$\mu'_{\theta}(dx) = (1/\theta - x)\theta e^{-\theta x} dx$$
, not a density.

EXAMPLE 6. $X \sim U[0, \theta]$ then

$$\forall g \in C_b([0, \theta]) \quad \frac{d}{d\theta} \int_0^\theta \frac{1}{\theta} g(x) \, dx = -\frac{1}{\theta^2} \int g(x) \, dx + \frac{1}{\theta} g(\theta)$$
$$= \frac{1}{\theta} \left[\int_{\mathbb{R}} \delta_{\theta}(x) g(x) \, dx - \frac{1}{\theta} \int_0^\theta g(x) \, dx \right]$$

and $\mu'(\theta)(A) = 1/\theta[\mathbf{1}_{\{\theta \in A\}} - \mu_{\theta}(A)]$.

The weak derivative μ'_{θ} is the difference of two measures: a mass at θ and the original measure $U[0, \theta]$.

Weak Differentiation: Absolute Continuity

Definition: Consider the space $(S, \mathcal{B}(S))$.

- A measure μ is said to be absolutely continuous w.r.t. a measure ν , denoted by $\mu_{\theta} << \nu$, if for every $B \subset \mathcal{B}(S)$ $\nu(B) = 0$ implies $\mu(B) = 0$.
- A family of measures $\mu_{\theta}, \theta \in \Theta$ is said to be dominated by ν if $\mu_{\theta} << \nu$, for all $\theta \in \Theta$.
- Two measures ν and μ are orthogonal , denoted $\mu \perp \nu$ if there is $A \subset S$ with $\nu(A) = 0$ and $\mu(A^c) = 0$.

Weak Differentiation: Absolute Continuity

Definition: Consider the space $(S, \mathcal{B}(S))$.

- A measure μ is said to be absolutely continuous w.r.t. a measure ν , denoted by $\mu_{\theta} << \nu$, if for every $B \subset \mathcal{B}(S)$ $\nu(B) = 0$ implies $\mu(B) = 0$.
- A family of measures $\mu_{\theta}, \theta \in \Theta$ is said to be dominated by ν if $\mu_{\theta} << \nu$, for all $\theta \in \Theta$.
- Two measures ν and μ are orthogonal , denoted $\mu \perp \nu$ if there is $A \subset S$ with $\nu(A) = 0$ and $\mu(A^c) = 0$.

Theorem 1 (*Radon-Nikodym*) Two σ -finite measures on $\mathcal{B}(S)$ satisfy $\mu << \nu$ if and only if there exists a nonnegative measurable function on $(S,\mathcal{B}(S))$ denoted by $\left[\frac{d\mu}{d\nu}\right]:S \to \mathbb{R}$ such that for every $B \in \mathcal{B}(S)$

$$\mu(B) = \int_{B} \left[\frac{d\mu}{d\nu} \right] (s) \, \nu(ds).$$

The function $\left[\frac{d\mu}{d\nu}\right]$ is called the Radon-Nikodym derivative and sometimes it is also called the " ν -density" of μ .

Weak Differentiation: Absolute Continuity

Dominated family $\mu_{\theta} << \nu$ of probability measures , then:

$$\mu(B) = \int_{B} \left[\frac{d\mu}{d\nu} \right] (s) \nu(ds) = \int_{B} f_{\theta}(s) \nu(ds).$$

• Likelihood Ratio: Underlying space (Ω, \mathfrak{F}) , $X(\theta) \sim \mu_{\theta}$ and $Y \sim \nu$. Define the nonnegative $\sigma(Y)$ -measurable random variable:

$$L(\theta, \omega) = f_{\theta}(Y(\omega))$$

then for all $g \in C_b(S)$ $\mathsf{E}[g(Y)L(\theta,Y)] = \mathsf{E}[g(X(\theta))]$. Change of measure.

Weak Differentiation: Absolute Continuity

Dominated family $\mu_{\theta} << \nu$ of probability measures , then:

$$\mu(B) = \int_{B} \left[\frac{d\mu}{d\nu} \right] (s) \nu(ds) = \int_{B} f_{\theta}(s) \nu(ds).$$

• Likelihood Ratio: Underlying space (Ω, \mathfrak{F}) , $X(\theta) \sim \mu_{\theta}$ and $Y \sim \nu$. Define the nonnegative $\sigma(Y)$ -measurable random variable:

$$L(\theta, \omega) = f_{\theta}(Y(\omega))$$

then for all $g \in C_b(S)$ $\mathsf{E}[g(Y)L(\theta,Y)] = \mathsf{E}[g(X(\theta))]$. Change of measure.

Score function method:

$$\frac{d}{d\theta} \int g(s)\mu_{\theta}(ds) = \int g(s)\frac{d}{d\theta} f_{\theta}(s) \nu(ds) = \int g(s) \left(\frac{\frac{d}{d\theta} f_{\theta}(s)}{f_{\theta}(s)}\right) f_{\theta}(s)\nu(ds)
= \int g(s)\frac{d}{d\theta} \ln[f_{\theta}(s)] f_{\theta}(s)\nu(ds) = \int g(s)S(\theta,s) \mu_{\theta}(ds)$$

Score Function for DES

 $\{Z_n(\theta)\}\$ a homogeneous Markov process in a general state space $S \subset \mathbb{R}^d$. Transitions dominated by lebesgue measure (densities):

$$\forall z \in S, \quad P_{\theta}(z, A) = \mathsf{P}(Z_{n+1} \in A | Z_n = z) \sim f_{\theta}(z, x)$$

Chain rule for differentiation ⇒

$$J'(\theta) = \frac{d}{d\theta} \int g(s_1, \dots, s_T) \prod_{i=1}^T P_{\theta}(ds_i, s_{i-1})$$

$$= \sum_{j=1}^T \int g(s_1, \dots, s_T) \frac{d}{d\theta} \ln(f_{\theta}(s_j, s_{j-1})) \times \prod_{i=j+1}^T P_{\theta}(ds_i, s_{i-1}) P_{\theta}(ds_j, s_{j-1}) \prod_{i=1}^{j-1} P_{\theta}(ds_i, s_{i-1}) ,$$

for any $g \in C_b(S)$. Gradient estimators:

$$\frac{d}{d\theta} \mathsf{E}[L(Z_1, \dots, Z_T)] = \sum_{j=1}^n \mathsf{E}\left[L(Z_1, \dots, Z_T) \frac{d}{d\theta} \ln\left(f_{\theta}(Z_j, Z_{j-1})\right)\right]$$

Weak Differentiation

Example 7. $X \sim U[0, \theta]$ then

• Weak derivative:

$$\forall g \in C_b([0,\theta]) \quad \frac{d}{d\theta} \int_0^\theta \frac{1}{\theta} g(x) \, dx = -\frac{1}{\theta^2} \int g(x) \, dx + \frac{1}{\theta} g(\theta)$$
$$= \frac{1}{\theta} \left[\int_{\mathbb{R}} \delta_{\theta}(x) g(x) \, dx - \frac{1}{\theta} \int_0^\theta g(x) \, dx \right]$$

and
$$\mu'(\theta)(A) = 1/\theta[\mathbf{1}_{\{\theta \in A\}} - \mu_{\theta}(A)]$$
.

Score function: write down the (usual) density:

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & x \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

What is $\frac{d}{d\theta} \ln f_{\theta}(x)$????

Score funtion is not applicable: support depends on $\theta \Rightarrow$ unbounded derivatives of densities.

Weak Derivatives

Theorem 2 (*Hahn-Jordan Decomposition*) For any finite signed measure ν on $(S, \mathcal{B}(S))$ there exist disjoint sets S^+, S^- such that $S^+ \cup S^- = S$, with the property that

$$A \subset S^+ \Rightarrow \nu(A) > 0 \qquad \text{and} \qquad A \subset S^- \Rightarrow \nu(A) < 0$$

Definition: The positive and negative parts of ν are:

$$\nu_{\theta}^{\pm}(B) = \nu_{\theta}(B \cap S^{\pm}) \quad \forall B \subset \mathcal{B}(S)$$

so that $\nu(B) = \nu^{+}(B) + \nu^{-}(B)$.

Weak Derivatives

Theorem 3 (*Hahn-Jordan Decomposition*) For any finite signed measure ν on $(S, \mathcal{B}(S))$ there exist disjoint sets S^+, S^- such that $S^+ \cup S^- = S$, with the property that

$$A \subset S^+ \Rightarrow \nu(A) > 0 \qquad \text{and} \qquad A \subset S^- \Rightarrow \nu(A) < 0$$

Definition: The positive and negative parts of ν are:

$$\nu_{\theta}^{\pm}(B) = \nu_{\theta}(B \cap S^{\pm}) \quad \forall B \subset \mathcal{B}(S)$$

so that $\nu(B) = \nu^{+}(B) + \nu^{-}(B)$.

- In particular, if μ_{θ} is weakly differentiable then $\mu'_{\theta}(S) = 0$,
- Hahn-Jordan: $c_{\theta} = (\mu')_{\theta}^{+}(S) = -(\mu')_{\theta}^{-}(S)$,
- Normalising: Let $\mu_{\theta}^{\pm}(B) = (\mu')_{\theta}^{\pm}(B)/c_{\theta} \quad \forall B \subset \mathcal{B}(S)$
- Then μ_{θ}^{\pm} are probability measures

Using these probabilities, the derivative of an expectation can be expressed as the difference of two expectations.

Weak Derivatives

Definition: Let μ_{θ} be a family of measures on $(S, \mathcal{B}(S))$. A triple $(c_{\theta}, \mu_{\theta}^+, \mu_{\theta}^-)$ consisting of

- a positive constant c_{θ} ,
- ullet two probability measures $\mu_{ heta}^{\pm}$

and is called a weak derivative of μ_{θ} if

- μ_{θ} is weakly differentiable at each θ , and
- For all $g \in C_b(S)$

$$\int_{S} g(s)\mu_{\theta}'(ds) = c_{\theta} \left(\int_{S} g(s)\mu_{\theta}^{+}(ds) - \int_{S} g(s)\mu_{\theta}^{-}(ds) \right)$$

If the left–hand side equals zero for all g, we define the weak derivative of μ_{θ} as $(1, \mu_{\theta}, \mu_{\theta})$.

EXAMPLE 8. For $X \sim U[0, \theta]$, $c_{\theta} = \frac{1}{\theta}$, μ_{θ}^{+} is the mass density at θ , and $\mu_{\theta}^{-} = \mu_{\theta} \sim U[0, \theta]$.

Overview: examples

EXAMPLE 9. $X \sim \exp(\theta)$, domination $\nu \sim$ lebesgue measure. $f_{\theta}(x) = \theta e^{-\theta x}$.

$$\frac{d}{d\theta}f_{\theta}(x) = e^{-\theta x} - \theta x e^{-\theta x} \quad (> 0 \text{ iff} \quad x > 1/\theta)$$

Use Hahn-Jordan:

$$c_{\theta} = \int_{0}^{1/\theta} (1 - \theta x) e^{-\theta x} dx = e\theta$$

$$f_{\theta}^{+}(x) = (1 - \theta x) e^{1 - \theta x} 1_{\{0 < x \le 1/\theta\}}$$

$$f_{\theta}^{-}(x) = -(1 - \theta x) e^{1 - \theta x} 1_{\{x > 1/\theta\}}$$

Overview: examples

EXAMPLE 10. $X \sim \exp(\theta)$, domination $\nu \sim$ lebesgue measure. $f_{\theta}(x) = \theta e^{-\theta x}$.

$$\frac{d}{d\theta}f_{\theta}(x) = e^{-\theta x} - \theta x e^{-\theta x} \quad (> 0 \text{ iff} \quad x > 1/\theta)$$

• Use Hahn-Jordan:

$$c_{\theta} = \int_{0}^{1/\theta} (1 - \theta x) e^{-\theta x} dx = e\theta$$

$$f_{\theta}^{+}(x) = (1 - \theta x) e^{1 - \theta x} 1_{\{0 < x \le 1/\theta\}}$$

$$f_{\theta}^{-}(x) = -(1 - \theta x) e^{1 - \theta x} 1_{\{x > 1/\theta\}}$$

• Simulation: Generate two random variables, X^{\pm} with respective densities $f_{\theta}^{\pm}(\cdot)$ and build the estimator $c_{\theta}[L(X^{+}) - L(X^{-})]$

Overview: examples

EXAMPLE 11. $X \sim \exp(\theta)$, domination $\nu \sim$ lebesgue measure. $f_{\theta}(x) = \theta e^{-\theta x}$.

$$\frac{d}{d\theta}f_{\theta}(x) = e^{-\theta x} - \theta x e^{-\theta x} \quad (> 0 \text{ iff} \quad x > 1/\theta)$$

• Use Hahn-Jordan:

$$c_{\theta} = \int_{0}^{1/\theta} (1 - \theta x) e^{-\theta x} dx = e\theta$$

$$f_{\theta}^{+}(x) = (1 - \theta x) e^{1 - \theta x} 1_{\{0 < x \le 1/\theta\}}$$

$$f_{\theta}^{-}(x) = -(1 - \theta x) e^{1 - \theta x} 1_{\{x > 1/\theta\}}$$

- Simulation: Generate two random variables, X^{\pm} with respective densities $f_{\theta}^{\pm}(\cdot)$ and build the estimator $c_{\theta}[L(X^{+})-L(X^{-})]$
- Score function: Uses estimator $L(X)(1/\theta X)$,
- IPA: Uses estimator $h'(\theta)(X/\theta)$ (chain rule), if unbiased.