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Abstract. We propose a novel regularizer when training an auto-encoder
for unsupervised feature extraction. We explicitly encourage the latent
representation to contract the input space by regularizing the norm of
the Jacobian (analytically) and the Hessian (stochastically) of the en-
coder’s output with respect to its input, at the training points. While
the penalty on the Jacobian’s norm ensures robustness to tiny corrup-
tion of samples in the input space, constraining the norm of the Hes-
sian extends this robustness when moving further away from the sample.
From a manifold learning perspective, balancing this regularization with
the auto-encoder’s reconstruction objective yields a representation that
varies most when moving along the data manifold in input space, and
is most insensitive in directions orthogonal to the manifold. The second
order regularization, using the Hessian, penalizes curvature, and thus
favors smooth manifold. We show that our proposed technique, while
remaining computationally efficient, yields representations that are sig-
nificantly better suited for initializing deep architectures than previously
proposed approaches, beating state-of-the-art performance on a number
of datasets.
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1 Introduction

Good techniques for learning a single layer of useful nonlinear feature extractors
appear to be a fundamental ingredient behind most recent successes in training
deeper architectures [1]. Many algorithms have already been investigated in this
role, starting with the Restricted Boltzmann Machines (RBM) used to initialize
(“pre-train”) individual layers of Deep Belief Networks [10] and Deep Boltzmann
Machines [18]. Alternatives that have been used successfully as learned non-
linear feature extractors include kernel PCA [6], semi-supervised embedding [25],
sparse coding1 [13], classical auto-encoders [2] and novel, better-suited variations
of auto-encoders, such as sparse auto-encoders [14, 11, 8], and the Denoising
Auto-Encoders (DAE) of [22, 23, 20].

1 Note that in sparse coding, the forward feature mapping is not computed by a
“simple” function, but is the result of an optimization procedure. It is nevertheless
a deterministic mapping, albeit a computationally intensive one.
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When used as deterministic feature extractors, both the Restricted Boltz-
mann Machines and the various flavors of auto-encoders, traditionally yield a
mapping of the same basic form: extracted features are a linear projection of
the input, passed through a sigmoid nonlinearity. Now all these approaches can
easily be extended to other forms of nonlinear mappings, and the question of the
relative merits of different types of nonlinear mappings is indeed an important
one. But another equally important question that motivated the present study is
what algorithm and associated learning principle will extract the “best” possible
mapping of that traditional form. “Best” is to be understood here in the sense of
producing a representation better suited to subsequent processing stages, i.e. ex-
tracting relevant, useful, features. This is typically measured objectively by the
classification performance of a subsequently built classifier, starting from the
representation obtained by unsupervised learning. It can also often be analyzed
qualitatively by looking at the linear filters learned by the algorithm.

Modern successes of this kind of unsupervised feature learning approaches
appear to depart from the past focus on dimensionality reduction. Quite the op-
posite, they embrace rich over-complete representations of higher dimensionality
than the input. In the context of auto-encoders, no longer having a dimensional-
ity bottleneck means one has to use some other form of regularization to preclude
trivial useless solutions (where reconstruction error would be small not only for
training examples but for any input configuration). Simple traditional weight de-
cay regularization, which embodies a prior preference toward smaller magnitude
weights2 does not appear to offer an appropriate cure [23]. Some successful vari-
ants encourage sparse representations [15, 8], or in the case of the DAE [22, 23],
stochastically corrupt the auto-encoder’s input, thus changing the objective to
that of denoising.

Recently a novel approach for regularizing auto-encoders was proposed, termed
Contractive Auto-Encoders (CAE), [17, 16], showing significant improvements
in state-of-the-art performance on a number of benchmark datasets. It shares a
similar motivation to the DAE of [23]: aiming for robustness to small variations
of the input. But the CAE achieves this in a rather different manner: instead
of stochastically corrupting the input, it balances the reconstruction error with
an analytical penalty term that penalizes the Frobenius norm of the encoder’s
Jacobian at training points. Another important difference is that the CAE aims
directly at obtaining a robust representation, whereas the DAE’s criterion is to
have a robust reconstruction of the uncorrupted example. [17] further provide
empirical evidence that the trade-off between reconstruction error and the CAE’s
regularization term yields a representation that captures the local directions of
variation dictated by the data, which often correspond to a lower-dimensional
non-linear manifold, while being more invariant to the vast majority of directions
orthogonal to the manifold.

The present work extends the CAE approach by proposing a simple and
computationally efficient technique to not only penalize the first order deriva-
tive (Jacobian) of the mapping but also the second order (Hessian) thus fur-

2 Thus encourages staying closer to a linear mapping.
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thering the stability of the learned representation around training points, which
we find to improve the representation both in terms of filters learned (more of
the visually interesting ones) and in terms of classification error. While the an-
alytical computation of the Jacobian’s norm is no more costly than computing
the reconstruction error, an exact analytical computation of the Hessian would
be prohibitive. We will retain computational efficiency by using a stochastic
approximation of the Hessian’s norm.

2 Considered framework

2.1 Setup and Notation

We are interested in learning a mapping function f that maps an input x ∈ IRdx

to a representation h = f(x) ∈ IRdh . We will be using the following notation
conventions:

– Wx denotes the matrix vector product between a matrix W and vector x
(vectors are considered column vectors by default).

– 〈A,B〉 denotes the inner product defined as the sum over all elements of
the element-wise product. This corresponds to the ordinary dot product for
vectors and to the Frobenius product for matrices.

– ‖A‖ =
√
〈A,A〉, corresponds to the Euclidean norm for vectors and the

Frobenius norm for matrices or tensors.
– Jf (x) = ∂f

∂x (x) denotes the dh × dx Jacobian matrix of f evaluated at x.
– Hf (x) = ∂J

∂x (x) = ∂2f
∂x2 (x) denotes the dh × dx × dx Hessian tensor of f

evaluated at x.
– ε ∼ N (0, σ2I) indicates ε is a random vector variable following an isotropic

Gaussian distribution of variance σ2.
– Eε∼N (0,σ2I)[g(ε)] denotes the expectation of the enclosed expression with

respect to the specified variable and distribution. When unambiguous, we
may simply write E[g(ε)].

– Dn = {x(1), . . . , x(n)} is a training set of n points x(i) ∈ IRdx from which we
want to learn mapping f .

– Function f is parameterized by a set of parameters θ. These will be learned by
approximately optimizing an objective function J , i.e. θ∗ = arg minθ J (θ;Dn).
This approximate optimization will be carried out with a stochastic gradient
descent technique.

2.2 Basic Auto-Encoder

The basic Auto-Encoder (AE) framework considered here starts from an encod-
ing function f that maps an input x ∈ IRdx to hidden representation h(x) ∈ IRdh .
It has the form

h = f(x) = s(Wx+ bh), (1)

where s is the logistic sigmoid activation function s(z) = 1
1+e−z . The encoder is

parametrized by a dh × dx weight matrix W , and a bias vector bh ∈ IRdh .
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A decoder function g then maps hidden representation h back to a recon-
struction y:

y = g(h) = s(W ′h+ by), (2)

The decoder’s parameters are a bias vector by ∈ IRdx , and a matrix W ′. In this
paper we only explore the tied weights case, in which W ′ = WT .

Basic auto-encoder training consists in finding parameters θ = {W, bh, by}
that minimize the reconstruction error on a training set of examples Dn, i.e.
minimizing the following objective function:

JAE(θ) =
∑
x∈Dn

L(x, g(f(x))), (3)

where L(t, r) is the reconstruction error between target t and reconstruction
r (typically squared error or cross-entropy loss).

2.3 The First-Order Contractive Auto-Encoder

To encourage robustness of f(x) to small variations of a training input x, [17]
penalize its sensitivity to that input, measured as the Frobenius norm of the
Jacobian Jf (x) [16]. Thus a Contractive Auto-Encoder (CAE) is trained to op-
timize the following objective:

JCAE(θ) =
∑
x∈Dn

L(x, g(f(x))) + λ‖Jf (x)‖2, (4)

where λ is a positive hyperparameter that controls the strength of the regu-
larization.

Let h = f(x). The linear+sigmoid mapping yields a simple expression for
the penalty term: ‖Jf (x)‖2 =

∑dh

j=1 ‖hj(1 − hj)Wj‖2. This has a similar com-
putational cost as computing the reconstruction error (e.g. squared error is
‖ − x + by +

∑dh

j=1 hjWj‖2). Thus computing the objective and the gradient
update in a CAE is only about twice as expensive as in an ordinary AE; both
have the same overall computational complexity of O(dhdx).

2.4 Proposed Higher Order Regularization

The penalty over the Jacobian yields a preference for mappings f that are invari-
ant locally at the training points. We propose to extend the flat region further
away from the training points by also penalizing higher order terms, in particular
the curvature, characterized by the Hessian.

While computing the Jacobian regularization is essentially no more expensive
than computing the reconstruction error, computational requirements for penal-
izing analytically computed higher orders grows exponentially with the order.
Specifically, computing the norms of kth order derivative of f has a compu-
tational complexity of O(dhdkx). Computing the gradient of such higher order
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regularization terms with respect to model parameters thus becomes quickly
prohibitive.

We propose instead to use a stochastic approximation of the Hessian Frobe-
nius norm. Consider a noise random variable ε ∼ N (0, σ2I), we have

‖Hf (x)‖2 = lim
σ→0

1
σ2

E
[
||Jf (x)− Jf (x+ ε)||2

]
(5)

This is obtained starting with a Taylor series expansion of Jf around x; the
proof is given in the appendix. For non-infinitesimal noise, the right hand side
would also contain contributions from higher order derivatives, but these vanish
in the limit σ → 0.

Our novel proposed algorithm, that we shall call Contractive Auto-Encoder
with Hessian regularization (CAE+H) thus tries to optimize the following ob-
jective:

JCAE+H(θ) =
∑
x∈Dn

L(x, g(f(x))) + λ ||Jf (x)||2 + γE
[
||Jf (x)− Jf (x+ ε)||2

]
,

(6)
where λ and γ are non-negative hyperparameters that control how strongly we
penalize the Jacobian and the Hessian. Informally, we see that the last term limits
the Hessian norm by encouraging the Jacobian norm at x and at neighboring
points to be close to zero.

In practice, we will use a stochastic approximation of the expectation by
generating a small mini-batch of a few corrupted samples x̃ = x + ε (all from
the same x, but different ε) thus incurring some variance for the computational
benefit of not having to explicitly compute the analytical Hessian.

3 Geometric Interpretation

According to the manifold assumption [5], structured data in a high dimensional
space, such as natural images, are thought to concentrate near a lower dimen-
sional non-linear manifold. With this perspective in mind, [17] give the following
geometric interpretation of the workings of the CAE. The penalty on the Jaco-
bian norm encourages, at training points, an equally strong contractive mapping
in all input space directions. This pressure is however exactly counteracted (at
a local minimum) by the gradient of the reconstruction error term, that ensures
that distinct training points can be accurately reconstructed from their represen-
tation3. In particular, neighboring training points on the manifold must receive
a distinguishable mapping. This means that in the area surrounding the exam-
ples, the learnt mapping has to be far less contractive in directions parallel to
the manifold, while it can be maximally contractive in the directions orthogonal
3 Note that having tied weights means that encoder and decoder weights have the

same magnitude. Consequently the CAE cannot merely play the game of having the
encoder scale down the input and the decoder blow it up again.
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to the manifold. This view means that the representation will change little when
moving orthogonal to the manifold and most when moving along the manifold,
so that the learnt representation constitutes a kind of coordinate system on the
manifold.

[17] provide empirical evidence that this is indeed happening by examining,
for the learnt mapping, the singular value spectrum of the Jacobian at train-
ing points. It characteristically showed but a few singular values much larger
than the others, which confirms that the mapping is maximally contractive in
the overwhelming majority of directions (presumed to be those orthogonal to the
low dimensional manifold), while being significantly less contractive in only a few
directions (those parallel to the low dimensional manifold). From this geometric
interpretation, the leading singular vectors of the Jacobian matrix (those asso-
ciated with large singular values) are the directions in input space to which the
representation is most sensitive, and can be understood as spanning the tangent
space of the manifold.

The addition of the Hessian penalty, introduced here, will encourage the
Jacobian to change slowly (or not at all) as we move away from a training point.
When the move is orthogonal to the the manifold, this should ensure that the
directions to which the representation is most sensitive remain those parallel to
the manifold. When the move is along the manifold, forcing the Jacobians at two
nearby points to be close means, from the above geometrical interpretation, that
the tangent spaces at these points must be close. It thus prefers flatter manifolds
by penalizing curvature.

4 Related Previous Work

Traditional regularization [21] for learning a mapping f imposes a prior pref-
erence over the considered space of functions (or their parameters), through
the addition of a penalty term λΩ(f) to the regression objective. Thus the
usual weight decay regularization penalizes the squared norm of the weights:
Ωwd(f) = ‖W‖2. In the case of a linear mapping this corresponds precisely to
the norm of its Jacobian matrix. But this is no longer the same with a nonlinear
mapping. Penalization of second order derivatives (roughness penalty) is also a
commonly employed in fitting statistical models. It is used extensively in non-
parametric methods such as smoothing splines [24, 9]. These regularizers can all
be expressed in the following general form, which penalizes the norm of the kth

order derivatives:

Ωk(f) =
∫ ∣∣∣∣∣∣∣∣∂kf(x)

∂x(k)

∣∣∣∣∣∣∣∣2 dx,
where the integral is over the whole domain of f . This yields a simple tractable
expression when applied to a linear mapping or to non-parametric spline models.
But when learning a parameterized non-linear mapping such as linear+sigmoid,
the integral becomes intractable.

Thus [4] investigated penalizing, on training data points only, the norm of
the Hessian diagonal only, which he computes analytically. This is similar to our
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approach, except we chose to penalize a stochastic approximation of the whole
Hessian norm, rather than an analytically exact diagonal only. Our stochastic
approximation scheme is a simple, practical, and computationally efficient alter-
native to penalizing the full Hessian norm. Also in [4] the goal was to regularize
a supervised objective, which is quite different from our focus on unsupervised
feature learning.

Note that applying a regularizer in this way is a departure from the classical
view as a prior on function space. Since the regularization term is evaluated only
on or around training points, the regularizer becomes data-dependent, and can
no longer be considered a true “prior” in the Bayesian sense. Note that this is true
also of the various attempts to yield sparse representations with auto-encoder
variants [8, 14, 11] that were inspired by the influential work on sparse coding
by [13]. Since the sparsity of representation is sought only at training points,
it also constitutes a data-dependent regularizer. Whereas in previous work this
restriction to the training points (instead of the whole input domain) might have
been seen as an approximation, here this is a very important feature. We only
want the contraction and flatness effects where the data density is
large.

The geometrical interpretation of the Jacobian as representing the tangent
space of a manifold is also related to the work on tangent propagation [19],
semi-supervised embedding [25] and non-local manifold Parzen windows [3], but
with marked differences. Tangent propagation [19] uses prior knowledge, based
on known transformations, to define the contractive directions, and is used in a
supervised setting. The CAE does not use any prior information to choose the
directions of contraction. They are implicitly extracted from the dataset during
the training. Semi-supervised embedding [25], in conjunction with a supervised
criterion, uses pairs of neighboring points and tries to pull them together, thus
explicitly contractive in directions along the manifold. This is to be contrasted
with the CAE that contracts mostly in directions orthogonal to the manifold,
without the computational requirement of a neighborhood graph. Non-local man-
ifold Parzen windows [3] learns a function to explicitly output tangent directions
at a point, whereas the CAE’s tangent directions are to be found in the Jacobian
matrix of the mapping function it learns. Contrary to the CAE+H that we pro-
pose here, none of these methods seem to address the curvature of the modeled
manifold.

5 Experiments

5.1 Analysis of CAE+H

Efficiency of the approximation. Following Eq. (5), we approximate stochas-
tically the Frobenius norm of the true Hessian of the hidden layer h(x) with
respect to the input. As we have seen earlier, the approximation depends on two
hyperparameters, the number of corrupted inputs nc, and the standard devia-
tion of the Gaussian noise σ. To illustrate how the approximation is affected
by different values of these hyperparameters, we estimate the absolute value of
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the difference ∆ between the true Hessian norm and the approximated norm
as we vary both hyperparameters. As one can expect, the optimal number of
corrupted inputs tends to infinity Figure 1(a), and the optimal variance tends to
zero Figure 1(b). It should be noted that while evaluating the exact true Hessian
norm is feasible in O(d2

xdh), in practice computing the gradient of the penalty
w.r.t model parameters is prohibitive. With our approximation, estimating the
norm costs only O(ncdxdh). In our experiments, due to numerical instability we
avoid using tiny values for the standard deviation. This also has the beneficial
effect of penalizing higher order derivatives.
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(a) mini-batch size nc
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Fig. 1. Using the hidden representation h(x) of an auto-encoder, we compute the
meanand variance of the norm of the Hessian on 1000 samples with an optimal fixed
set of hyperparameters. Evolution of ∆ with respect to (a) nc and (b) σ.

Penalization of higher order terms. In high dimensional input space, we
will use a small number of corrupted samples, as it would be computationally
expensive otherwise. Although the approximation is less accurate in this case,
Figure 2 shows that using Eq. (5) in the objective cost is still penalizing the
norm of the true Hessian in contrast with the simple CAE objective cost on the
MNIST dataset. The variance of the noise is also chosen large enough so that
higher order terms are also penalized. The values used in our experiments are in
range σ ∈ [0.1, 0.5] and nc ∈ {4, 6, 8}.

5.2 Experimental results

Considered models. In our experiments, we compare the proposed Higher
Order Contractive Auto-Encoder (CAE+H) against the following models for
unsupervised feature extraction:

– RBM-binary : Restricted Boltzmann Machine trained with Contrastive Di-
vergence,

– AE: Basic auto-encoder,
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Fig. 2. On MNIST, during the optimization of CAE+H we measure the true Hessian
norm and the approximated norm with nc = 4 and σ = 0.3. We see that our computa-
tionnally efficient approximation is very effective at constraining the norm of the true
Hessian.

– DAE: Denoising auto-encoder with Gaussian noise,
– CAE: Contractive auto-encoder.

MNIST. We tried our model on the well known digit classification problem
(28×28 gray-scale pixel values scaled to [0,1 ]). We used the usual split of 50000
examples for training, 10000 for validation, and 10000 for test.

To empirically verify the advantage of the representation learnt using the
CAE+H with respect to its discriminative power, we pretrained different auto-
encoders using the regularization described above and used their hidden rep-
resentation h(x) as an input for a logistic regression. We also used these rep-
resentations to initialize a one hidden layer MLP. The auto-encoders were also
compared to an RBM.

As discussed in section 3, we illustrate how the CAE+H captures the direc-
tions of allowed variations within the data manifold. For any encoding function
f , we can measure the average contraction ratio for pairs of points, one of which,
x0 is picked from the validation set, and the other x1 randomly generated on a
sphere of radius r centered on x0 in input space. How this average ratio evolves
as a function of r yields a contraction curve. We have computed these curves
for the models for which we reported classification performance (the contraction
curves are however computed with their initial parameters prior to fine tuning).
Results are shown in Figure 6 for single-layer mappings.

5.3 MNIST variants

In addition to MNIST, we used some of its variants, namely MNIST-rot(digits
with added random rotation) and MNIST-bg-img(digits with random image
background) consisting of 10000 training, 2000 validation, 50000 test exam-
ples [12]4. Finally, we considered an artificially generated dataset rect for shape
4 Datasets available at http://www.iro.umontreal.ca/~lisa/icml2007.
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Fig. 3. On MNIST, Left: Mutual information between class labels and indi-
vidual hidden units Hidden units were binarized with a threshold of 0.5. CAE+H
extracts more discriminant features than others methods. Right: Mutual Informa-
tion between each class and random chosen hidden units. E.g The first hidden
unit is only responsive for the “6” digits

XXXXXXXXXModel
pretrain

AE RBM DAE CAE CAE+H

LogReg 2.17±0.29 2.04±0.28 2.05±0.28 1.82±0.26 1.2±0.21

MLP 1.78±0.26 1.3±0.22 1.18±0.21 1.14±0.21 1.04±0.20

Table 1. Comparison of the quality of extracted features from different models when
using them as the fixed inputs to a logistic regression (top row) or to initialize a MLP
that is fine-tuned (bottom row). Classification error rate is reported together with a
95% confidence interval. CAE+H is clearly less dependent on the fine-tuning step and
outperforms all other considered models by the quality of its representation.

classification where the task is to discriminate between tall and wide rectangles
(white on black).

5.4 CIFAR-10

In this section, we used the same preprocessing pipeline as [7] for feature ex-
traction. First, we randomly extract 160000 patches from the first 10000 images
of CIFAR-10. Each patch is locally contrast-normalized (subtract the mean and
divide by its standard deviation) and ZCA whitened.

In order to qualitatively compare filters obtained with different approaches,
we trained a CAE+H and other models in an unsupervised fashion with a high
number nh of hidden units on this set of preprocessed patches (see Figure 5).
This figure will be discussed in the next section.
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Fig. 4. Test accuracy of CAE and CAE+H versus different learning algorithms [7]

Once a non-linear feature-mapping has been learnt by unsupervised training,
we can evaluate different feature extraction techniques on a set of labeled images
using classification accuracy.

The same convolutional feature extraction as [7] has been used to compare
CAE+H and CAE with different models namely Sparse Restricted Boltzmann
Machine, Sparse Auto-encoder, Gaussian Mixtures Model and K-means cluster-
ing. On every image, each patch is preprocessed and passed through the encoder
to obtain nh feature maps. Then, to roughly reduce the dimension, features are
sum-pooled together over quadrants of the feature maps. So the input dimension

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-2 CAE+H-1 CAE+H-2

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 9.66±0.26 10.9±0.27 9.2±0.25

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 15.50±0.32 15.9±0.32 14.8±0.31

rect 2.15±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.21±0.10 0.7±0.07 0.45±0.06

Table 2. Comparison of stacked second order contractive auto-encoders with 1 and
2 layers (CAE+H-1 and CAE+H-2) with other 3-layer stacked models and baseline
SVM. Test error rate on all considered classification problems is reported together
with a 95% confidence interval. Best performer is in bold, as well as those for which
confidence intervals overlap. Clearly CAE+Hs can be successfully used to build top-
performing deep networks. 2 layers of CAE+H often outperformed 3 layers of other
stacked models.
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Fig. 5. Random filters from various model types with high dimensional hid-
den representation learnt on CIFAR10(4000units) and MNIST(2000units).
CAE+H extracts smoother features and obtains a smaller proportion of noisy filters
despite the exaggerated overcompleteness of the representation.

of the linear classifier is equal to 4nh. We trained a L2-regularized linear SVM
on these features and reported the test classification accuracy in Figure 4.

As another experiment, we used the sum pooled-features learned above as the
input to a shallow MLP to see if we could improve upon the SVM performance.
We used a CAE to initialize the parameters of the MLP. With this method, we
were able to achieve a classification accuracy of 78.5% on CIFAR-10.

6 Discussion

Upon qualitative examination of Figure 5, we can venture that the simple auto-
encoder learns poor feature detectors while DAE, CAE and CAE+H appear to
capture more relevant information. CAE-H and DAE present a higher proportion
of structured, local and sharp filters than the CAE.

From this observation, we can hypothesize that the sharper-looking filters
are likely to be more class-specific. In order to verify this objectively, we mea-
sured the mutual information between class labels and individual hidden units
binarized with a threshold of 0.5). These results are reported in Figure 3.The
CAE+H indeed has more specialized hidden units, that correlate better with
specific class labels.

This can explain the much better classification performance obtained with a
simple logistic regression stacked on the thus learnt representation, even without
any supervised fine tuning of the filters, as we can see in Table 1.

We have proposed an original and computationally efficient way to regular-
ize an auto-encoder by penalizing higher order derivatives of its learnt mapping,
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Fig. 6. On MNIST, Left: Contraction ratio with respect to distance from test
samples. The contractive models have a non-monotonic contraction, CAE+H con-
tracts further away from the samples. Right: Averaged Jacobian spectrum across
test samples.

without having to explicitly compute them. This novel unsupervised method for
learning feature detectors was shown to learn more appropriate features for su-
pervised tasks than several recently proposed competing methods. In particular,
it allowed us to beat the state-of-the-art on MNIST and variants, and to reach
it on CIFAR-10.

Compared to the other considered approaches, the CAE+H doesn’t seem to
depend as much on a supervised fine-tuning step to yield good performance. This
is especially interesting if one wants to apply the technique to build deep models
by stacking. Indeed the fine-tuning step is subject to the vanishing gradient
problem during back-propagation. So it is likely to be of great benefit to not
depend so much on the fine-tuning step.

Appendix

Proof that limσ→0 Eε∼N (0,σ2I)

[
1
σ2 ‖J(x+ ε)− J(x)‖2

]
= ‖H(x)‖2

Let ε ∈ Rdx . Taylor series expansion of the Jacobian around x yields

J(x+ ε) = J(x) +

(
dx∑
i=1

εi
∂J

∂xi
(x)

)
+R(x, ε), (7)

where the remainder R(x, ε) contains all higher order expansion terms:

R(x, ε) =
∞∑
K=2

1
K!

∑
i1,...,iK

εi1 . . . εiK
∂KJ

∂xi1 . . . ∂xiK
(x).
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We can thus write for a given σ ∈ R:

1
σ2
‖J(x+ ε)− J(x)‖2 =

1
σ2

∥∥∥∥∥
(

dx∑
i=1

εi
∂J

∂xi
(x)

)
+R(x, ε)

∥∥∥∥∥
2

=
1
σ2

∥∥∥∥∥
dx∑
i=1

εi
∂J

∂xi
(x)

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

+
2
σ2

〈
dx∑
i=1

εi
∂J

∂xi
(x) , R(x, ε)

〉
︸ ︷︷ ︸

T2

+
1
σ2
〈R(x, ε) , R(x, ε)〉︸ ︷︷ ︸

T3

(8)

Let ε ∼ N (0, σ2I) and let us consider the expectation of subexpressions T1, T2,
T3 in the limit σ → 0. Remainder R is a sum of terms of the form c εi1 . . . εiK
where c is constant with respect to ε, and K ≥ 2. Thus inner product T2 and
T3 will be sums of products of the same form but where K ≥ 3. Each such
product is a polynomial in components of ε, with the smallest exponent being
either 1 or ≥ 2. Such polynomials that have at least one odd exponent will have
an expectation of 0 (odd moments of a 0-mean Gaussian are zero). Those that
contain only even exponents will at least have one component with an exponent
of 4 or more or two components with an exponent of at least 2 each, so their
expectation will be a polynomial in σ whose smallest exponent is no less than 4.
In all cases, for K ≥ 3, we will have limσ→0

1
σ2 E [cεi1 . . . εiK ] = 0. Since T2 and

T3 are sums of terms of this form, we can write

lim
σ→0

E [T2] = lim
σ→0

E [T3] = 0. (9)

The expectation of the first term T1 yields

E [T1] = E

[
1
σ2

〈
dx∑
i=1

εi
∂J

∂xi
(x) ,

dx∑
i=1

εi
∂J

∂xi
(x)

〉]

=
1
σ2

dx∑
i=1

dx∑
j=1

E [εiεj ]
〈
∂J

∂xi
(x) ,

∂J

∂xj
(x)
〉
.

For i 6= j, E [εiεj ] = E [εi] E [εj ] = 0 and all the corresponding terms in the above
sum vanish. For i = j however we have E [εiεj ] = E

[
ε2i
]

= σ2. Consequently the
above sum reduces to

E [T1] =
1
σ2

dx∑
i=1

σ2

〈
∂J

∂xi
(x) ,

∂J

∂xi
(x)
〉

= ‖H(x)‖2 . (10)

Putting together Equations 8, 9 and 10, we can conclude:

lim
σ→0

Eε∼N (0,σ2I)

[
1
σ2
‖J(x+ ε)− J(x)‖2

]
= lim
σ→0

E [T1] + lim
σ→0

E [T2] + lim
σ→0

E [T3]

= ‖H(x)‖2 .
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