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Denoising autoencoders have been previously shown to be competitive
alternatives to restricted Boltzmann machines for unsupervised pretrain-
ing of each layer of a deep architecture. We show that a simple denois-
ing autoencoder training criterion is equivalent to matching the score
(with respect to the data) of a specific energy-based model to that of a
nonparametric Parzen density estimator of the data. This yields several
useful insights. It defines a proper probabilistic model for the denoising
autoencoder technique, which makes it in principle possible to sam-
ple from them or rank examples by their energy. It suggests a different
way to apply score matching that is related to learning to denoise and
does not require computing second derivatives. It justifies the use of tied
weights between the encoder and decoder and suggests ways to extend
the success of denoising autoencoders to a larger family of energy-based
models.

1 Introduction

This note uncovers an unsuspected link between the score matching tech-
nique (Hyvärinen, 2005, 2008) for learning the parameters of unnormalized
density models over continuous-valued data, and the training of denois-
ing autoencoders (Vincent, Larochelle, Bengio, & Manzagol, 2008; Vincent,
Larochelle, Lajoie, Bengio, & Manzagol, 2010).

Score matching (SM) is an alternative to the maximum likelihood princi-
ple suitable for unnormalized probability density models whose partition
function is intractable. Its relationship to maximum likelihood has been
investigated by Lyu (2010), who formally relates the Fisher divergence
that yields score matching and the Kullback-Leibler divergence that yields
maximum likelihood. Interestingly, his formal analysis indicates that SM
searches for parameters that are more robust to small-noise perturbations
of the training data. Score matching has also been recast as a special case
under the more general frameworks of generalized score matching (Lyu,
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2010; Marlin, Swersky, Chen, & de Freitas, 2010) and minimum probability
flow (Sohl-Dickstein et al., 2009), allowing generalizations of SM to discrete
distributions (Hyvärinen, 2007b; Lyu, 2010; Sohl-Dickstein et al., 2009). The
minimum probability flow paradigm is particularly interesting as it unifies
several recent alternative parameter estimation methods, for both continu-
ous and discrete data, under a single unified view.1 Recently, Kingma and
LeCun (2010) investigated a regularized form of SM that adds a specific reg-
ularization term to the original SM objective. Its relationship to this work is
discussed in detail in section 5.

Denoising autoencoders (DAE) were proposed by Vincent et al. (2008)
as a simple and competitive alternative to the contrastive-divergence-
trained restricted Boltzmann Machines (RBM) used by Hinton, Osin-
dero, and Teh (2006) for pretraining deep networks (Erhan et al., 2010;
Vincent et al., 2010). Previous studies have already pointed out connec-
tions between SM and contrastive divergence (Hyvärinen, 2007a; Sohl-
Dickstein et al., 2009), have connected SM to optimal denoising for
gaussian noise with infinitesimal variance (Hyvärinen, 2008), and have
shown that training gaussian binary RBM with SM is equivalent to
training a regular (nondenoising) autoencoder with an additional reg-
ularization term (Swersky, 2010). This note, however, is the first to
recast the training of a DAE as a form of regularized SM. This con-
nection yields insights relevant to both research directions and suggests
a novel parameter estimation technique that has its roots in both DAE
and SM.

We begin with a brief presentation of the DAE architecture for
continuous-valued inputs in section 2 and the SM technique in section 3.
This allows us to introduce our formalism and precise terminology. In sec-
tion 4, we connect the denoising autoencoder objective to SM. We conclude
by a discussion on how our findings advance our understanding of both
approaches.

1.1 Notation. We are interested in techniques that learn the parameters
θ of a model by minimizing some objective function J (θ ). For uniformity of
notation, all distributions will be represented by their probability density
functions (pdf) on R

d . The pdf for discrete distributions will be expressed
with Dirac-deltas δ.

1Specifically SM (Hyvärinen, 2005), minimum velocity learning (Movellan, 2008), and
certain forms of contrastive divergence (Hinton, 2002; Welling & Hinton, 2002) are all
recast as minimizing the Kullback-Leibler divergence between the data distribution and
the distribution obtained after running, for infinitesimal time, a dynamic that would
transform it into the model distribution (Sohl-Dickstein et al., 2009).
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q (x) Unknown true pdf. x ∈ R
d

Dn = {x(1), . . . , x(n)} Training set: i.i.d. sample from q
q0(x) = 1

n

∑n
i=1 δ(‖x − x(i)‖) Empirical pdf associated with Dn

qσ (x̃|x) = 1
(2π )d/2σ d e− 1

2σ2 ‖x̃−x‖2
Smoothing kernel or noise model:

isotropic gaussian of variance σ 2

qσ (x̃, x) = qσ (x̃|x)q0(x) Joint pdf
qσ (x̃) = 1

n

∑n
t=1 qσ (x̃|x(t)) Parzen density estimate based on Dn

obtainable by marginalizing
qσ (x̃, x)

p(x; θ ) Density model with parameters θ

J1 � J2 Means J1(θ ) and J2(θ ) are equivalent
optimization objectives2

Eq (x) [g(x)] = ∫
x q (x)g(x)dx Expectation with respect to

distribution q
〈u, v〉 = ∑

i ui vi Dot product between two vectors
‖u‖ = √〈u, u〉 Euclidean norm of vector u
softplus(x) = log(1 + ex) Will be applied elementwise to

vectors
sigmoid(x) = 1

1+e−x = softplus′(x) Will be applied elementwise to
vectors

I Identity matrix
WT Transpose of matrix W
Wi Vector for ith row of W
W·, j Vector for j th column of W

2 Denoising Autoencoders

Denoising autoencoders (DAEs) are a simple modification of classical au-
toencoder neural networks that are trained not to reconstruct their input
but rather to denoise an artificially corrupted version of their input (Vin-
cent et al., 2008, 2010). Whereas an overcomplete regular autoencoder can
easily learn a useless identity mapping, a DAE must extract more useful
features in order to solve the much harder denoising problem. DAEs have
proven to be an empirically successful alternative to restricted Boltzmann
machines (RBM) for pretraining deep networks (Vincent et al., 2008, 2010;
Erhan et al., 2010). Denoising autoencoders have also been used in different
contexts in the earlier works of LeCun (1987); Gallinari, LeCun, Thiria, and
Fogelman-Soulie (1987); and Seung (1998).

2Equivalence will be asserted when J2 = α J1 + β with α > 0, β ∈ R. Indeed, a
gradient-based optimization algorithm, when starting from some initial θ value, should
land in the exact same minimum whether optimizing J1 or J2 (this may, however, require
learning rate adjustment to compensate for scaling factor α).
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In this study, we consider the denoising version of a simple classical
autoencoder that uses a single sigmoidal hidden layer. Since data points
originate from a continuous real valued distribution, it is natural to use a
linear decoder with a squared reconstruction loss.3 We will be using tied
weights whereby encoder and decoder share the same linear transformation
parameters. The considered corruption is additive isotropic gaussian noise.
A detailed description of the architecture follows:

� A training input x ∈ Dn is first corrupted by additive gaussian noise
of covariance σ 2I, yielding corrupted input x̃ = x + ε, ε ∼ N (0, σ 2I).
This corresponds to conditional density qσ (x̃|x) = 1

(2π )d/2σ d e− 1
2σ2 ‖x̃−x‖2

.
� The corrupted version x̃ is encoded into a hidden representation

h ∈ R
dh through an affine mapping followed by a nonlinearity:

h = encode(x̃) = sigmoid(Wx̃ + b), where x̃ ∈ R
d , h ∈ (0, 1)dh , W is a

dh × d matrix and b ∈ R
dh .

� The hidden representation h is decoded into reconstruction xr through
affine mapping: xr = decode(h) = WT h + c, where c ∈ R

d .
� The parameters θ = {W, b, c} are optimized so that the expected

squared reconstruction error ‖xr − x‖2 is minimized, that is, the ob-
jective function being minimized by such a DAE is

J DAEσ (θ ) = Eqσ (x̃,x)[‖decode(encode(x̃)) − x‖2]

= Eqσ (x̃,x)[‖WT sigmoid(Wx̃ + b) + c − x‖2]. (2.1)

3 Score Matching

3.1 Explicit Score Matching. Score matching was introduced by
Hyvärinen (2005) as a technique to learn the parameters θ of probabil-
ity density models p(x; θ ) with intractable partition function Z(θ ), where p
can be written as

p(x; θ ) = 1
Z(θ )

exp(−E(x; θ )).

E is called the energy function. Following Hyvärinen (2005), we will
call score the gradient of the log density with respect to the data vector:
ψ(x; θ ) = ∂ log p(x;θ )

∂x . Beware that this use differs slightly from traditional
statistics terminology where score usually refers to the derivative of the log
likelihood with respect to parameters, whereas here we are talking about a
score with respect to the data. The core principle of SM (Hyvärinen, 2005) is
to learn θ so that ψ(x; θ ) = ∂ log p(x;θ )

∂x best matches the corresponding score

3As opposed to a linear+sigmoid decoder with a Bernoulli cross-entropy loss, which
would be the preferred choice for binary input.
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of the true distribution: ∂ log q (x)
∂x . The corresponding objective function to be

minimized is the expected squared error between these two vectors:

J E SMq (θ ) = Eq (x)

[
1
2

∥∥∥∥ψ(x; θ ) − ∂ log q (x)
∂x

∥∥∥∥2
]

.

We refer to this formulation as explicit score matching (ESM).
Note that the score ψ(x; θ ) does not depend on troublesome Z(θ ). But

since q is unknown, we do not have explicit regression targets ∂ log q (x)
∂x .

Hyvärinen (2005) mentions in passing that nonparametric methods might
be used to estimate those, and we shall later pay closer attention to this
possibility.

3.2 Implicit Score Matching. Hyvärinen (2005) instead proceeds by
proving the following remarkable property:

Eq (x)

[
1
2

∥∥∥∥ψ(x; θ ) − ∂ log q (x)
∂x

∥∥∥∥2
]

︸ ︷︷ ︸
J E SMq (θ )

= Eq (x)

[
1
2

∥∥ψ(x; θ )
∥∥2 +

d∑
i=1

∂ψi (x; θ )
∂xi

]
︸ ︷︷ ︸

J I SMq (θ )

+ C1, (3.1)

where ψi (x; θ ) = ψ(x; θ )i = ∂ log p(x;θ )
∂xi

, and C1 is a constant that does not
depend on θ . This yields an implicit SM objective J I SMq that no longer
requires having an explicit score target for q but is nevertheless equivalent
to J E SMq . Hyvärinen (2005) formally shows that provided q (x) and ψ(x; θ )
satisfy some weak regularity conditions,4 we have

J E SMq � J I SMq . (3.2)

3.3 Finite Sample Version of Implicit Score Matching. Since we only
have samples Dn from q , Hyvärinen proposes to optimize the finite sample
version of J I SMq which, following our notation, we shall write as J I SMq0 :

J I SMq0 (θ ) = Eq0(x)

[
1
2

∥∥ψ(x; θ )
∥∥2 +

d∑
i=1

∂ψi (x; θ )
∂xi

]

= 1
n

n∑
t=1

(
1
2

∥∥ψ(x(t); θ )
∥∥2 +

d∑
i=1

∂ψi (x(t); θ )
∂xi

)
. (3.3)

4Namely, q (x) and ψ(x; θ ) are differentiable, Eq (x)[‖ ∂ log q (x)
∂x ‖2] is finite, and for any θ,

Eq (x)[‖ψ(x; θ )‖2] is finite and lim‖x‖→∞ q (x)ψ(x; θ ) = 0.
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J I SMq0 is asymptotically equivalent to J I SMq when n → ∞ and hence
asymptotically equivalent to objective J E SMq . This can be summarized as

J E SMq � J I SMq � lim
n→∞ J I SMq0 . (3.4)

What happens in the transition from J I SMq to finite-sample version J I SMq0

is, however, not entirely clear. Concerns regarding the stability of the re-
sulting criterion were raised by Kingma and LeCun (2010), who instead
propose optimizing a regularized version of J I SMq0 ,

J I SMreg(θ ) = J I SMq0 (θ ) + λ
1
n

n∑
t=1

d∑
i=1

(
∂ψi (x(t); θ )

∂xi

)2

, (3.5)

where the strength of the additional regularization term is controlled by
hyperparameter λ. The relationship between this criterion and the criteria
we propose below are further discussed in section 5.

4 Linking Score Matching to the Denoising
Autoencoder Objective

4.1 Matching the Score of a Nonparametric Estimator. The possibil-
ity of matching the score ψ(x; θ ) with an explicit target score for q ob-
tained through nonparametric estimation was mentioned but not pursued
in Hyvärinen (2005). We now examine this possibility more closely. Explic-
itly matching ψ(x; θ ) with the score of Parzen windows density estimator
qσ (x̃) yields the following objective:

J E SMqσ
(θ ) = Eqσ (x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃)
∂ x̃

∥∥∥∥2
]

. (4.1)

For σ > 0, qσ is differentiable, decreases to 0 at infinity, and
Eqσ (x̃)[‖ ∂ log qσ (x̃)

∂ x̃ ‖2] is finite. All regularity conditions are satisfied, so the
same equivalence with ISM as in equation 3.2 holds:

J E SMqσ
� J I SMqσ

. (4.2)

Note that this equivalence breaks in the limit σ → 0 because qσ no longer
satisfies these regularity conditions and J E SMqσ can no longer be computed
(whereas J I SMqσ

remains well behaved).

4.2 Denoising Score Matching. Let us now consider a slightly different
objective, which is inspired by both the SM principle and the DAE approach
of using pairs of clean and corrupted examples (x, x̃). For joint density
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qσ (x̃, x) = qσ (x̃|x)q0(x), we define the following denoising score matching
(DSM) objective:

J DSMqσ
(θ ) = Eqσ (x,x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃|x)
∂ x̃

∥∥∥∥2
]

. (4.3)

The underlying intuition is that following the gradient ψ of the log
density at some corrupted point, x̃ should ideally move us toward the clean
sample x. Note that with the considered gaussian kernel, we have

∂ log qσ (x̃|x)
∂ x̃

= 1
σ 2 (x − x̃). (4.4)

Direction 1
σ 2 (x − x̃) clearly corresponds to moving from x̃ back toward clean

sample x, and we want ψ to match that as best it can.
This objective, inspired by denoising autoencoders, is equivalent to ex-

plicit SM. Formally,

J E SMqσ
� J DSMqσ

. (4.5)

The proof is in the appendix and does not depend on the particular form
of qσ (x̃|x) as long as log qσ (x̃|x) is differentiable with respect to x̃.

4.3 An Energy Function That Yields the Denoising Autoencoder
Objective. Let us now choose for model p the form

p(x; θ ) = 1
Z(θ )

exp(−E(x; θ )),

E(x; W, b, c︸ ︷︷ ︸
θ

) = −〈c, x〉 − 1
2 ‖x‖2 + ∑dh

j=1 softplus
(〈

W j , x
〉 + b j

)
σ 2 . (4.6)

We then have

ψi (x; θ ) = ∂ log p(x; θ )
∂xi

= − ∂ E
∂xi

= 1
σ 2

⎛
⎝ci − xi +

dh∑
j=1

softplus′ (〈W j , x
〉 + b j

) ∂
(〈

W j , x
〉 + b j

)
∂xi

⎞
⎠
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= 1
σ 2

⎛
⎝ci − xi +

dh∑
j=1

sigmoid
(〈

W j , x
〉 + b j

)
W j i

⎞
⎠

= 1
σ 2

(
ci − xi + 〈

W·i , sigmoid(Wx + b)
〉)

,

which we can write as the single equation

ψ(x; θ ) = 1
σ 2

(
WT sigmoid(Wx + b) + c − x

)
. (4.7)

Substituting equations 4.4 and 4.7 in the expression for J DSMqσ
,

equation 4.3, we get, for this choice of Parzen kernel and density model,

J DSMqσ
(θ ) = Eqσ (x,x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃|x)
∂ x̃

∥∥∥∥2
]

= Eqσ (x,x̃)

[
1
2

∥∥∥∥ 1
σ 2 (WT sigmoid(Wx̃ + b) + c − x̃)

− 1
σ 2 (x − x̃)

∥∥∥∥2]

= 1
2σ 4 Eqσ (x,x̃)

[ ∥∥WT sigmoid(Wx̃ + b) + c − x
∥∥2 ]

= 1
2σ 4 J DAEσ (θ ).

We have thus shown that

J DSMqσ
� J DAEσ . (4.8)

5 Discussion

Putting together equations 4.2, 4.5, and 4.8, we can write, for σ > 0,

J I SMqσ
� J E SMqσ

� J DSMqσ
� J DAEσ . (5.1)

In summary, training the denoising autoencoder defined in section 2 is
equivalent to performing SM (explicit or implicit) with the energy function
of equation 4.6 on Parzen density estimate qσ . Such training would typically
use stochastic gradient descent, whereby samples from qσ are obtained by
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corrupting samples from Dn. And it may be carried out with any of these
four optimization objective formulations.5

We introduced the kernel-smoothed empirical distribution qσ to show
a connection between SM and a simple DAE. Interestingly, the regular-
ized SM criterion J I SMreg (see equation 3.5) that Kingma and LeCun (2010)
recently introduced with the very different motivation of curing possible
instabilities, was derived by approximating what amounts to J I SMqσ .

6 From
this perspective, our four qσ -based criteria in equation 5.1, including the
DAE, may be seen as alternative approximation-free forms of regularized
score matching. A key difference is that, as is done with DAE training, we
would optimize stochastic versions of these approximation-free regularized
criteria by corrupting training examples (i.e., sampling form qσ ), whereas
Kingma and LeCun (2010) optimize an approximation of J I SMqσ

, centered on
the training samples only (i.e., sampling from q0). Also, whereas J I SMreg , like
the other ISM criteria, requires computing second derivatives, the stochas-
tic version of our novel J DSMqσ

criterion does not, and thus appears much
simpler to implement.

Note that the energy function in equation 4.6 is particular in that its
scaling, which we may call its temperature, is chosen to match the corrupt-
ing noise level σ 2. This is required only to establish the last equivalence
with the specific DAE we considered. But regarding the generic objectives
J I SMqσ

� J E SMqσ
� J DSMqσ

, their σ may in principle be chosen regardless
of the form or temperature of whatever energy function is to be learned.
Interestingly, the energy function in equation 4.6, which we designed to
yield the equivalence with our denoising autoencoder objective, happens
to be very similar to the free energy of a restricted Boltzmann machine with
binary hidden units and gaussian visible units (Welling, Rosen-Zvi, & Hin-
ton, 2005; Bengio, Lamblin, Popovici, & Larochelle, 2007; Swersky, 2010).
The major difference is that this latter free energy does not have a global
temperature scaling of the whole expression.7 We designed equation 4.6 to
exactly yield the denoising version of the classic autoencoder described in
section 2. But with tied weights, it may be preferable to allow an extra pos-
itive scaling parameter α for the reconstruction, so that there at least exists
an equivalent reparameterization of the model for scaled input data.8 This

5Note, however, that while these qσ -based objectives are formally equivalent, their
stochastic gradient descent optimization, based on sampling a limited number of cor-
rupted examples, is likely to behave differently for each objective.

6A first-order Taylor expansion and a diagonal Hessian approximation are used.
7Specifically, in the free energy of a gaussian-binary RBM, the softplus terms are not

divided by σ 2 or scaled in any way.
8If, for example, one multiplies the input values by 100, one can obtain the same

hidden representation as before by dividing W by 100. But because of the tied weights,
this means that the reconstruction would also be divided by 100 (i.e., there is no equiv-
alent reparameterization), unless it can be compensated by an additional scaling of the
reconstruction by a parameter α.
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is easily obtained in the energy function by multiplying the sum of softplus
terms in equation 4.6 by α. We may even allow an arbitrary rescaling fac-
tor α j for each hidden-layer dimension independently by multiplying each
softplus term by its own rescaling parameter α j , which yields the following
more flexible energy function:

E(x; W, b, c, α, σm︸ ︷︷ ︸
θ

)

= − 1
σ 2

m

⎛
⎝〈c, x〉 − 1

2
‖x‖2 +

dh∑
j=1

αjsoftplus
(〈

W j , x
〉 + b j

)⎞⎠ .

Here we have also included, as model parameter, a σm (where m stands for
model) distinct from the noise σ of the training objective.9

Our qσ -based objectives J I SMqσ
, J E SMqσ

, or J DSMqσ
can be used as alter-

natives to the finite sample objective J I SMq0 (see equation 3.3) advocated in
Hyvärinen (2005) for learning unnormalized densities. Note that J I SMq0 is a
special case of J I SMqσ

obtained in the limit of σ → 0. Also, since Kingma and
LeCun (2010) showed that it may be preferable to use a regularized criterion
(that they derived from smoothed empirical distribution qσ ), it is likely that
our qσ -based criteria may, for σ > 0, yield better generalization performance
than the J I SMq0 advocated in Hyvärinen (2005).10 It seems that σ could al-
low one to choose an optimal bias-variance trade-off for the finite-sample
estimation of the true SM gradient of interest ∇θ J E SMq = ∇θ J I SMq . While
∇θ J I SMq0 is an unbiased estimator of it, ∇θ J I SMqσ

= ∇θ J E SMqσ
= ∇θ J DSMqσ

will generally be biased when σ > 0 but are also likely to have a lower
variance.

Among the three equivalent SM objectives based on qσ , objective J DSMqσ

appears particularly interesting as a novel alternative formulation. It was
motivated by both the SM and the DAE principles. From DAE, it borrows the
idea of learning to denoise artificially corrupted samples, and from SM, it
borrows the idea of learning a score function derived from an unnormalized
density. J DSMqσ

may prove simpler and more efficient in practice than the
mathematically equivalent J I SMqσ

because it does not require computing
second derivatives.

Our result is also a significant advance for DAEs. First, we have defined
a proper energy function for the considered DAE through equation 4.6.

9We would, however, have to set σm = σ to recover a recognizable denoising autoen-
coder objective.

10It is also noteworthy that the experimental results of Vincent et al. (2008, 2010)
on DAE showed that the best models, judged by their ability to extract useful features,
were obtained for nonnegligible values of the noise parameters. Moreover, this way of
controlling the model’s capacity worked much better than either reducing the hidden
layer size or than traditional weight decay.
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This will enable many previously impossible or ill-defined operations on a
trained DAE, for example, deciding which is the more likely among several
inputs, or sampling from a trained DAE using hybrid Monte Carlo (Duane,
Kennedy, Pendleton, & Roweth, 1987). Second, whereas using the same
weight matrix (“tied weights”) for the encoder and decoder is justified for
RBMs, the encoder-decoder framework does not constrain that choice. Pre-
vious work on DAEs (Vincent et al., 2008, 2010; Erhan et al., 2010) explored
both options, often finding tied weights to yield better empirical results.
Within the SM framework presented here, using tied weights between en-
coder and decoder now has a proper justification, since it follows naturally
from differentiating the energy. Third, this framework opens the door to
new variants that would naturally fall out from other choices of the energy
function.

Appendix: Proof That J E SMqσ
� J DSMqσ

Equation 4.5

The explicit score matching criterion using the Parzen density estimator is
defined in equation 4.1 as

J E SMqσ
(θ ) = Eqσ (x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃)
∂ x̃

∥∥∥∥2
]

,

which we can develop as

J E SMqσ
(θ ) = Eqσ (x̃)

[
1
2

∥∥ψ(x̃; θ )
∥∥2
]

− S(θ ) + C2, (A.1)

where C2 = Eqσ (x̃)
[ 1

2

∥∥ ∂ log qσ (x̃)
∂ x̃

∥∥2]
is a constant that does not depend on θ ,

and

S(θ ) = Eqσ (x̃)

[〈
ψ(x̃; θ ),

∂ log qσ (x̃)
∂ x̃

〉]

=
∫

x̃
qσ (x̃)

〈
ψ(x̃; θ ),

∂ log qσ (x̃)
∂ x̃

〉
d x̃

=
∫

x̃
qσ (x̃)

〈
ψ(x̃; θ ),

∂
∂ x̃ qσ (x̃)
qσ (x̃)

〉
d x̃

=
∫

x̃

〈
ψ(x̃; θ ),

∂

∂ x̃
qσ (x̃)

〉
d x̃

=
∫

x̃

〈
ψ(x̃; θ ),

∂

∂ x̃

∫
x

q0(x)qσ (x̃|x)dx
〉

d x̃
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=
∫

x̃

〈
ψ(x̃; θ ),

∫
x

q0(x)
∂qσ (x̃|x)

∂ x̃
dx
〉

d x̃

=
∫

x̃

〈
ψ(x̃; θ ),

∫
x

q0(x)qσ (x̃|x)
∂ log qσ (x̃|x)

∂ x̃
dx
〉

d x̃

=
∫

x̃

∫
x

q0(x)qσ (x̃|x)
〈
ψ(x̃; θ ),

∂ log qσ (x̃|x)
∂ x̃

〉
dxd x̃

=
∫

x̃

∫
x

qσ (x̃, x)
〈
ψ(x̃; θ ),

∂ log qσ (x̃|x)
∂ x̃

〉
dxd x̃

= Eqσ (x̃,x)

[〈
ψ(x̃; θ ),

∂ log qσ (x̃|x)
∂ x̃

〉]
.

Substituting this expression for S(θ ) in equation A.1 yields

J E SMqσ
(θ ) = Eqσ (x̃)

[
1
2

∥∥ψ(x̃; θ )
∥∥2
]

−Eqσ (x,x̃)

[〈
ψ(x̃; θ ),

∂ log qσ (x̃|x)
∂ x̃

〉]
+ C2. (A.2)

We also have defined in equation 4.3,

J DSMqσ
(θ ) = Eqσ (x,x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃|x)
∂ x̃

∥∥∥∥2
]

,

which we can develop as

J DSMqσ
(θ ) = Eqσ (x̃)

[
1
2

∥∥ψ(x̃; θ )
∥∥2
]

−Eqσ (x,x̃)

[〈
ψ(x̃; θ ),

∂ log qσ (x̃|x)
∂ x̃

〉]
+ C3, (A.3)

where C3 = Eqσ (x,x̃)
[ 1

2

∥∥ ∂ log qσ (x̃|x)
∂ x̃

∥∥2]
is a constant that does not depend

on θ .
Looking at equations A.2 and A.3, we see that J E SMqσ

(θ ) = J DSMqσ
(θ ) +

C2 − C3. We have thus shown that the two optimization objectives are
equivalent.
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